Playing with Gradle

An Android vision on Gradle

through an application with flavors

with an indutrialized delivery goal

Code is on GitHub

https://github.com/MathiasSeguy-Android2EE/MultiplicationBasile

By Mathias Seguy

L’ also known as Android2ee e
=, .

https://github.com/MathiasSeguy-Android2EE/MultiplicationBasile

Table of contents

[Ao T VY o I G o | [U POTPN 1
(@ o F=T o) f =T ol R o1 o o [¥ ot f [o TSR 5
N € - o | LI o T o o[o] o [T ot AR 5
1.1 Gradle’s configuration filESccuiiii i e 5
1.2 Project’s configuration files.......uii i s 9
13 Gradle with the commMand lINE..........ooiiiiiiie e 12
Chapter 2: ANAroid taSKSciiiiiieee ettt e e et e e e et e e e e s bteeeeebeeeeeebeeeeesastaeessnsseeesannes 14
2 ANAEOId tASKS ...ueeetietieiiee ettt et b e s st sttt e b e b e b sne e e aeeeaeeas 14
2.1 23V =T V1 1= PSP 16
2.2 ANAroid tasks famIilYoc.eieiieiee e e reeas 17
2.3 BUIl tasks familyeeeiieiieee e e 21
2.4 INSTAll TASKS FAMIIY .. e e e e e et e e e e e abae e e e nnaeas 24
2.5 Verification task family........ocouieiie e e e 25
2.6 Oers details ...oeuveeiiiieeiie ettt ettt e b e et e b e sans 25
3 Simpler with ANdroidStUAIOc.eviei i s e e e sbre e e s s breee e eanes 26
A CONCIUSION «eteettette ettt ettt h e st e bt et e e s bt e sa e e sat e s bt et e e beesbeesbeesateenteebeesbeesneenas 28
Chapter3: Flavors, BuildTypes and VariantS......c..ceeeccuieeiieciiiee ettt e eectte e e eevte e e e evreeesereeeeseveeeeeeanes 29
LI = TV 11 To Y/ o 1= RSPt 29
B FIAVOIS ettt h et s et et r e re e s sar e e r e neennes 30
6.1 BaSICS eveeiitii ittt et sba e 30
6.2 (D] gT=T 0 T[] o LSOO P P PTPROP 35
7 StEP DY STEP EXAMPIE oot e e et e e e et e e e e e bt e e e e e bt e e e e ebteee e e ntaeaeenraeaeanes 37
7.1 LCT Lo | 1=] TP P PO PPOPRRPRT 37
7.2 Setting your folders StIUCTUIEuiii i e s eaee e 39
7.3 CUSTOMIZING RESOUICES .. .uvtiiiiiiiriiiiiieeeeeeesiitt et e e e e s ssbrreeeeeesessaabaaeeeeesssssssbanaeeeesssnssnseseeeens 39
7.4 CUSLOMIZING JAVA COUB....uuiiiiiii ittt e e e e e et ee e e e e e e e et aee e e e e s e e snsbaaeeeeeessnnnnnreeneaens 49
Chapter 4: FIavors AN ManifeSt......ccuueei ittt eette et e e e e tte e e e eette e e e sbteeesebeeeeseneeeeesnnes 52
I [41 o] = Lot {0l TSP PP PPPRPPPTPP 52
8.1 The getINStanCe QUESTION ...cccuuiiii e ree e e e e s e be e e e e ara e e e e aaeeas 55
Chapter 5: Understanding the life CyCle. ... 57
1S T I o 1= T o] o 1=1 o o S 57
10 (070 o oY =1 aT=T 2 1o o 1SR 58
11 Yo][] 4T T TSSO PP PP 58

12 (000 o Lol [V 1 1o o IPU TR 58

Chapter 6: Setting code coverage on Android With JACOCO.......c..eeeieciiiiiciiiie e 59
13 ENabling JACOCO ON YOUF PrOJECE........viiiiciiiie ettt e et e e e saa e e e e atae e e seasaeeeeas 59
13.1 Enable code coverage for instrumented testsccocuiiiiviiiiiiiiiiie e 59
13.2 Enable tests coverage for UNtTeStS .. iiiiee ettt e s eiree e snre e e 60
13.3 What NAPPENE ...t e et e e e et e e e e sbt e e e e ebaeeesebteeessntaeeesntaeeesnnes 60
14 Defining and creating YOoUr FEPOIT.......iii ettt e e et e e e stae e e e saa e e e e ataeeesnasaaeeeas 62
15 REFEIENCES ...ttt ettt ettt e bt e s b e s bt e sat e st e e bt b e e beesbeeeneeeare s 64
Chapter 7: Build Organizationiiiccuiiee e cciiees st settee e st e e st e e s sbee e e s sbteeessbeaeessbeaeessnsseeessnes 65
16 BUIlAS OrganizatioN.....cciiccuiiie ittt ee st e e st e e s st e e s et ae e e e b re e e earraeeean 66
16.1 General Nnotions on *.properties fileS........cuie e 66
16.2 Defining your own Properties fil@S.........ou e icie ettt 67
16.3 Extracting password from gradle.properties file (Default)ccccceeecviieieciiee e 67
16.4 Extracting password from my gradle_others.propertiescccccevivcieeeirciieeeeccieeeeecieee e 69
16.5 Splitting the build.gradle file into several files to gain in readability........cccovvveeieeiicnnnnnn.n. 72
16.6 Define variables for Java code and Manifestcccceeeiiriiriiniieneneeeeeeeeee e 73
16.7 Custom my gradle memory to run fastcoocciiiiicciii et 75
17 FaN o] o] [Tor=YaToT o I < TV 11 [PRt 76
17.1 Mock and Production flavors for tests environments.........ccoccueerieeeiieenieeenieeniee e 76
17.2 Deliver the project for weekly delivery to the team and stakeholderscccccovvvvirciennnnns 78
Chapter IX: GELHING FEAl......ueei e et e e e et e e e e et e e e e ebte e e eebteeesebaaeeseseeeesannes 80
18 Organize your Gradle files as YOUr COAE.......uiiiiiiiiieie et 80
19 Extract your build variables and CONSTANtSoeeiiciiiiiiiiiie e 81
20 Load your external properties files ... 82
21 T = Yot Yo 1W | ll o Yo Yo 3RS 84
22 Building, testing and ANalyzing SCHIPT ..cocuviii et e e et e e s aaeeeean 86
D220 N = TUT1 o VYo [o [@ g T=Tol ol o T <Yt o - [SRR 86
22,2 FUIBUIIA TASK ..eeueeeiieriieeie ettt st sttt 87
P2 T e U o 2=T oo o =T £ - 1 USRS 87
22.4 runReporters:FINABUEZ TaSK.......ccccuiii ittt e e et e e e e eara e e e earae e e enraeeaean 89
22.5 runReporters:JacoCo task ... i 91
22.6 runReporters: JAVaDOC taSK......ccuciiieiiiiiie et et e e e nraaeeean 95
22.7 rUNREPOIErs: PIMID taSK ...ccccuiieeieiiiieecieee ettt ee ettt e e et e ettt e e e e tre e e e saaa e e e sataeeeennaeeesnnsneeans 96
23 THE FEIEASE SCIIPLS ..uiiiiiiiieie ittt ettt e ettt e e et e e e et e e e et e e e e sbteeeeebteeeeebtaeeesseaeeesssaeessnssaeasanes 98
23.1 One entry page for YOUT FEPOI.......cii ettt et e et e e et e e e eare e e e earee e e enareeas 101
24 B 01T 0T] (o= Lo N o Y- | U 104

25
26

241
24.2

Upload: Maven basics principles

Upload : In a Nexus Repository ..
Taking care of libraries

ConcluSioN ..eeeeeveeiciiiceeee e,

Chapter 1: Introduction

Let’s have a look at the build system use for developing Android application.

1 Gradle in the project

In our Android project Gradle is set in the following way:

[2 MultiplicationBasile D\ Git\MyProjets\MultiplicationBasile
» 1 .gradle
» [idea
v Ciapp
[build
3 libs
v Elsrc
» [androidTest
» [main
b [test
B .gitignore
& app.iml

build.gradle

E proguard-rules.pro
[build
v gradle

v wrapper
gradle-wrapper.jar
Il gradle-wrapper.properties
a .gitignore
build.gradle
Il gradle.properties

gradlew

gradlew.bat
[aii local.properties
[& MultiplicationBasile.iml

settings.gradle

W} External Libraries

Yep, gradle is everywhere, scaring isn’t it?
By the way there are 2 different types of files:

e Those that describe the project
e Those that describe the gradle’s configuration to use for this project.

Let’s beginning by the gradle’s configuration.

1.1 Gradle’s configuration files

1.1.1 What Gradle’s version should | use

The first parameter you have to define is which version of Gradle you want to use. In a way, it’s
pretty natural and well thought, don’t you think?

The files concern are those ones:

E= MultiplicationBasile [\ Git'\MyProjets\MultiplicationBasile
3 .gradle
[idea
[app
7 build
gradle
¥ wrapper

1 gradle-wrapper.jar

Il gradle-wrapper.properties
B gitignore
%} build.gradle
[t gradle.properties
EI gradlew
B gradlew.bat
m| lecal.properties
[& MultiplicationBasile.iml
O settings.gradle
il External Libraries

Which is the gradle folder of the project but more specifically is where you define the wrapper to
retrieve the version of gradle you want to use.

To define the gradle version, we just define where is the version of Gradle to use (and download if
it’s missing) in the gradle-wrapper.properties:

#Mon Dec 28 10:00:20 PST 2015

distributionBase=GRADLE_USER_HOME

distributionPath=wrapper/dists

zipStoreBase=GRADLE_USER_HOME

zipStorePath=wrapper/dists

distributionUrl=https\://services.gradle.org/distributions/gradle-3.3-all.zip

In this file you just have to change the url to the version you want to use. You can have a look here to

see what is the last version number: http://services.gradle.org/distributions

A good rule for that is to have the latest version of gradle because the gradle team works hard to
optimize your builds from version to version.

1.1.2 How can | build this type of project?

The second element to configure is what type of project do | build and more specifically how can |
build them? Because each type have specific tasks and way to do the build. Those specific tasks are
delivered through gradle’s plugins. So we need to explain to gradle where it can find the plugins it
needs.

We do that in our root build.gradle file. We call it like that because it is at the root of your project
and defines properties for the project and all its subprojects.

http://services.gradle.org/distributions

[2 MultiplicationBasile D:\Git\MyProjets\MultiplicationBasile
3 .gradle
[idea
[T app
7 build
[gradle
EI Jgitignore
r;ﬂ gradle.properties
E gradlew
EI gradlew.bat
[local. properties
[& MultiplicationBasile.iml
&) settings.gradle
il External Libraries

This file is the following

// Top-level build file where you can add configuration options common to all sub-projects/modules.

buildscript {
repositories {
jcenter()

}

dependencies {
classpath 'com.android.tools.build:gradle:2.2.3'

// NOTE: Do not place your application dependencies here; they belong
// in the individual module build.gradle files

}
}

allprojects {
repositories {
jcenter()

}
}

task clean(type: Delete) {
delete rootProject.buildDir

}

You have 3 different parts:

The buildscript where you define where the repositories are and what is the names of the
gradle’s plugins to use for this project.

allProjects define for all the project and its sub-projects where to download the libraries it
needs

task is just a new task added to your gradle task that just clean the build directory

So here, we just define that we want to use com.android.tools.build:gradle:2.2.3 as plugin for gradle
to build our project. It means the tasks of this plugin will be available for building your project.

7

1.1.3 How can | tune gradle (memory and more)?
In the file gradle.properties you can define a lot of properties for your project (and its sub-projects).

¥ [3 MultiplicationBasile 0:\Git\MyProjets\MultiplicationBasile
[.gradle

[.idea

L1 app

1 build

1 gradle

B .gitignore

(# build.gradle

-
>
-
>

Il gradle.properties
EI gradlew
B gradlew.bat
m local.properties
[& MultiplicationBasile.iml
= settings.gradle
b Wil External Libraries

We often use this file to define the memory dedicated to the gradle daemon.

Project-wide Gradle settings.

IDE (e.g. Android Studio) users:
Gradle settings configured through the IDE *will override*
any settings specified in this file.

For more details on how to configure your build environment visit
http://www.gradle.org/docs/current/userguide/build_environment.html|

Specifies the JVM arguments used for the daemon process.
The setting is particularly useful for tweaking memory settings.
#org.gradle.jvmargs=-Xmx1536m

When configured, Gradle will run in incubating parallel mode.

This option should only be used with decoupled projects. More details, visit

http://www.gradle.org/docs/current/userguide/multi_project_builds.html#sec:decoupled_projects
org.gradle.parallel=true

#Enable daemon
org.gradle.daemon=true

Specifies the JVM arguments used for the daemon process.

The setting is particularly useful for tweaking memory settings.

Try and findout the best heap size for your project build.

org.gradle.jvmargs=-Xmx2048m -XX:MaxPermSize=512m -XX:+HeapDumpOnOutOfMemoryError -
Dfile.encoding=UTF-8

When configured, Gradle will run in incubating parallel mode.

This option should only be used with decoupled projects. More details, visit

http://www.gradle.org/docs/current/userguide/multi_project_builds.html#sec:decoupled_projects
Modularise your project and enable parallel build

org.gradle.parallel=true

Enable configure on demand.
avoid building part of the project when it's not necessary
org.gradle.configureondemand=true

In this example we have define that:

e the configuration on demand is enable
e we run the build in parallel

e we want 2048 M of JVM for the daemon
e we want the daemon to be activated

So we tune our gradle process depending on our computer to optimize it.

We will see that file is also use to define others types of variables that will be accessible by the
subprojects.

1.2 Project’s configuration files
So we have explained to gradle how to work, let’s explain to it what to do.

1.2.1 How many modules belong to your project?
We first describes what contain our project. This is done in the setting.gradle file:

= MultiplicationBasile D:\Git\[MyProjets\ MultiplicationBasile
3 .gradle
Jddea
£ app
build
gradle
=| .gitignore
=% build.gradle
il gradle.properties

=| gradlew

gradlew.bat

il local.properties

= MultiplicationBasile.iml
O settings.gradle

i1y External Libraries

And it only contains the list of your sub-projects:

include ":app’

1.2.2 What is my module(s) description?
Now we are ready to define our Android project. This description is done in the file build.gradle at
the root level of your module.

[2 MultiplicationBasile [\ Git'\ Iy Projets\MultiplicationBasile
3 .gradle
[.idea
L% app
7 build
[libs
[src
E .gitignore
I:; app.iml
EI proguard-rules.pro
7 build
[gradle
B .gitignore
(*} build.gradle
(st gradle.properties
EI gradlew
B gradlew.bat

L local.properties
[& MultiplicationBasile.iml
O settings.gradle

il External Libraries

And it contains:

apply plugin: 'com.android.application’

android {
compileSdkVersion 25
buildToolsVersion "25.0.2"
defaultConfig {
applicationld "com.android2ee.basile.multiplication"
minSdkVersion 10
targetSdkVersion 25
versionCode 1
versionName "1.0"
testinstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"
}
buildTypes {
release {
minifyEnabled false
proguardFiles getDefaultProguardFile('proguard-android.txt'), '‘proguard-rules.pro’
}
}
}

dependencies {
compile fileTree(dir: 'libs', include: ['*.jar'])
androidTestCompile('com.android.support.test.espresso:espresso-core:2.2.2', {
exclude group: '‘com.android.support’, module: 'support-annotations’
1

compile '‘com.android.support:appcompat-v7:25.1.0'

10

testCompile 'junit:junit:4.12"
}
This file contains 3 main parts:

e What is the plugin to use to build the module: we want android plugin
e What is the android description of the module: the android block
e What are the libraries | need to build it: the dependencies block

The android block defines essential elements of your Android application:

e compileSDK: what version of the SDK do | use for compilation, higher is better

e minSDK: What is the minimal SDK version am | compatible with. A good rule is to follow
GoogleServices minSDK

e targetSDK: What is my running environment of predilection (If | run in a higher version of it,
the system will emulate my target version has execution environment).

e versionCode : Auto-increment integer that follow the delivered version

e versionName: Human readable version

e applicationld: We used to have the root package of the application as applicationld and to
define it in the manifest.xml. Now you can keep your root package in the manifest (it will be
use by the device when running your application for the classpath) and have a different
applicationld in your build.gradle (it will be used by PlayStore and Device to identify your
application). That means you can refactor your packages and keep your applicationld.

e testinstrumentationRunner defined which instrumentation runner you want to use when
running your test. It’s related to the AndroidTestingSupportLibrary Sdk and give you the
ability to use a Junit version 4.

The build type block gives you the ability to specify for each build type specific elements (like
versionNameSuffix, applicationIDSuffix, minify, shrink...).

By default you have 2 build types : Release or Debug. And you should stick on them because they are
the way to build your application. If you want to customize your application according to a context
(client, processor, brand, free/paid,...) you should consider flaviors.

The dependencies blocks is here to describes what are the libraries you depends on. You can specifiy
if it’s for compilation, test, for which flavor... and so on. Let’s have a look:

compile fileTree(dir: 'libs’, include: ['*.jar']) explains that all the files contained in the folder libs that
ends with .jar should be included for compilation of the apk,

androidTestCompile(‘com.android.support.test.espresso:espresso-core:2.2.2', {
exclude group: 'com.android.support’, module: 'support-annotations’
})
explains that when running for instrumentationTest we will need espresso but we will exclude the
support-annotations modules from it (transitive dependencies)

compile 'com.android.support:appcompat-v7:25.1.0' explains that we use the artifact with
groupid=com.android.support, artifactld=appcompat-v7 with version 25.1.0. Which is the normal
coordinate of any project in maven repositories.

testCompile 'junit:junit:4.12' just explains that for unit tests we need Junit 4.12 expressed in maven’s
project coordinates.

11

1.3 Gradle with the command line

Here is the last files you find in your project gradlew and gradlew.bat which are the gradle worker
executable.

v [MultiplicationBasile [\ Git\ [V, Projets\MultiplicationBasile
[.gradle
[idea
v [Eapp
> [build
1 libs
» src
E Jgitignore
[app.iml
(% build.gradle
B proguard-rules.pro
» [build
» [gradle
E Jgitignore
(& build.gradle
l-;ﬁ gradle.properties
gradlew
gradlew.bat
(s local.properties
[& MultiplicationBasile.iml
(& settings.gradle
b Wil External Libraries

This is the command line tool (one for linux/mac, the other for windows). That means you can run in
command line gradle command directly from Android Studio like that:

12

Terminal

-} [¢PATH%

% gradlew wersion

bash: gradlew: command not found

math@LAPTOP-SUBSQZ2NN MINGWed /4d/Git/MyProjets/MultiplicationBasile

& ./gradlew -v

Build time: 2017-01-03 15:31:04 TIC

Revision: 075893a340798c0clE322899%4]1lcecaliledelldb

Groovy: 2.4.7

Ant: Apache Ant(IM) wversion l.9.6& compiled on June 29 2013
| JVM: 1.8.0_101 (Cracle Corporation 25.101-b13)

0S: Windows 10 10.0 amdé&d

math@LAPTOP-SUBSQ2NN MINGWEd /d4/Git/MyProjets/MultiplicationBasile

Iy

P 4: Run '3:' ToDo [El Terminal = O Messages -ﬁ- & Android Monitor

As you see, use ./gradlew (relative path from the console point of view) because gradlew is not a
global command for your computer.

13

Chapter 2: Android tasks

Ok, so we had a small introduction with Gradle, now let’s dig into the subject a little bit more, we
gonna talk about Android tasks to have a better vision on what is it. If you are trying to find tips for
your daily code, just skip this chapter.

2 Android tasks

What is a task? a task is just a Gradle function, inherits from others, have parameter that can be
others methods and is designed to make a stuff. Blurry definition... by the way the one of the gradle
documentation is perhaps for you more clear :

Everything in Gradle sits on top of two basic concepts: projects and tasks.

Every Gradle build is made up of one or more projects. What a project represents
depends on what it is that you are doing with Gradle. For example, a project might
represent a library JAR or a web application. It might represent a distribution ZIP
assembled from the JARs produced by other projects. A project does not
necessarily represent a thing to be built. It might represent a thing to be done,
such as deploying your application to staging or production environments. Don't
worry if this seems a little vague for now. Gradle's build-by-convention support
adds a more concrete definition for what a project is.

Each project is made up of one or more tasks. A task represents some atomic piece
of work which a build performs. This might be compiling some classes, creating a
JAR, generating Javadoc, or publishing some archives to a repository.
https.//docs.gradle.org/current/userquide/tutorial _using tasks.html|

So if your run ./gradlew tasks in your terminal you will see the list of tasks available for your project :

Terminal

==

Total time: 1.966 =ecs

% .fgradlew tasksl]

P 2:Run = TODO Terminal =] 0: Messages ' & Android Monitor

All tasks runnable from root project

Android tasks

14

https://docs.gradle.org/current/userguide/tutorial_using_tasks.html

androidDependencies - Displays the Android dependencies of the project.
signingReport - Displays the signing info for each variant.
sourceSets - Prints out all the source sets defined in this project.

Build tasks

assemble - Assembles all variants of all applications and secondary packages.
assembleAndroidTest - Assembles all the Test applications.

assembleDebug - Assembles all Debug builds.

assembleRelease - Assembles all Release builds.

build - Assembles and tests this project.

buildDependents - Assembles and tests this project and all projects that depend on it.
buildNeeded - Assembles and tests this project and all projects it depends on.
clean - Deletes the build directory.

compileDebugAndroidTestSources

compileDebugSources

compileDebugUnitTestSources

compileReleaseSources

compileReleaseUnitTestSources

mockableAndroidJar - Creates a version of android.jar that's suitable for unit tests.

Build Setup tasks
init - Initializes a new Gradle build. [incubating]
wrapper - Generates Gradle wrapper files. [incubating]

Help tasks

buildEnvironment - Displays all buildscript dependencies declared in root project
‘MultiplicationBasile'.

components - Displays the components produced by root project 'MultiplicationBasile'. [incubating]
dependencies - Displays all dependencies declared in root project ‘MultiplicationBasile'.
dependencylnsight - Displays the insight into a specific dependency in root project
'‘MultiplicationBasile'.

dependentComponents - Displays the dependent components of components in root project
'‘MultiplicationBasile'. [incubating]

help - Displays a help message.

model - Displays the configuration model of root project '‘MultiplicationBasile'. [incubating]
projects - Displays the sub-projects of root project 'MultiplicationBasile'.

properties - Displays the properties of root project 'MultiplicationBasile'.

tasks - Displays the tasks runnable from root project 'MultiplicationBasile' (some of the displayed
tasks may belong to subprojects).

Install tasks

installDebug - Installs the Debug build.

installDebugAndroidTest - Installs the android (on device) tests for the Debug build.
uninstallAll - Uninstall all applications.

uninstallDebug - Uninstalls the Debug build.

uninstallDebugAndroidTest - Uninstalls the android (on device) tests for the Debug build.
uninstallRelease - Uninstalls the Release build.

15

Verification tasks

check - Runs all checks.

connectedAndroidTest - Installs and runs instrumentation tests for all flavors on connected devices.
connectedCheck - Runs all device checks on currently connected devices.
connectedDebugAndroidTest - Installs and runs the tests for debug on connected devices.
deviceAndroidTest - Installs and runs instrumentation tests using all Device Providers.
deviceCheck - Runs all device checks using Device Providers and Test Servers.

lint - Runs lint on all variants.

lintDebug - Runs lint on the Debug build.

lintRelease - Runs lint on the Release build.

test - Run unit tests for all variants.

testDebugUnitTest - Run unit tests for the debug build.

testReleaseUnitTest - Run unit tests for the release build.

2.1 By families
At first, it’s a bit confusing. But in fact there is a lot of tasks specified by build variants/type/context,
if we have a look by big families (I remove the help and other family) it can be resumed:

All tasks runnable from root project

Android tasks

androidDependencies - Displays the Android dependencies of the project.
signingReport - Displays the signing info for each variant.

sourceSets - Prints out all the source sets defined in this project.

Build tasks
assemble ***,
build ***
clean.
compile**

Install tasks
Install*** Install all applications.
Uninstall***

Verification tasks
check.
connected***
device***
lint***

test***

16

Better vision isn’t it, so let’s look at them.

2.2 Android tasks family
We have 3 really cool tasks here (especially when you play with flavors):

2.2.1 androidDependencies
Gradlew androidDependencies will show you, variant by variant, what libraries dependencies graph
is.

17

AGit\MyProjets\MultiplicationBasile»gradlew androidDependencies

he JavaCompile.setDependencyCacheDir() method has been deprecated and is scheduled t
Tncremental java compilation is an incubating feature.

he TaskInputs.source(Object) method has been deprecated and is scheduled to be remove
:app:androidDependencies

com.android.support:appcompat-v7:25.1.8
com.android. support:support-v4:25.1.8
com.android. support:support-compat:25.1.8
com.android. support:support-media-compat:25.1.0
com.android. support:support-compat:25.1.0
.android.support:support-core-utils:25.1.8
com.android. support:support-compat:25.1.0
.android.support:support-core-ui:25.1.8
com.android. support:support-compat:25.1.0
.android.support:support-fragment:25.1.0
com.android. support:support-compat:25.1.8
com.android. support:support-media-compat:25.1.8
com.android.support:support-compat:25.1.8
.android.support:support-core-ui:25.1.8
com.android.support:support-compat:25.1.8
.android. support:support-core-utils:25.1.8
com.android.support:support-compat:25.1.8
com.android. support:support-vector-drawable:25.1.0
com.android. support:support-compat:25.1.8
com.android. support:animated-vector-drawable:25.1.0
com.android. support:support-vector-drawable:25.1.8
com.android. support:support-compat:25.1.0

com.android.support.test.espresso:espresso-core:2.2.2
com.android.support.test:rules:8.5
com.android. support.test:runner:8.5
com.android. support.test:exposed-instrumentation-api-publish:8.5
com.android.support.test:runner:8.5
com.android.support.test:exposed-instrumentation-api-publish:8.5
com.android.support.test.espresso:espresso-idling-resource:2.2.2

com.android. support:appcompat-v7:25.1.8
com.android. support:support-v4:25.1.8
com.android. support:support-compat:25.1.8
com.android. support:support-media-compat:25.1.0
com.android. support:support-compat:25.1.0
.android.support:support-core-utils:25.1.8
com.android. support:support-compat:25.1.0
.android.support:support-core-ui:25.1.8
com.android. support:support-compat:25.1.0
.android.support:support-fragment:25.1.0
com.android. support:support-compat:25.1.8
com.android. support:support-media-compat:25.1.8
com.android. support:support-compat:25.1.8
.android.support:support-core-ui:25.1.8
com.android.support:support-compat:25.1.8
.android.support:support-core-utils:25.1.8
com.android.support:support-compat:25.1.8
com.android. support:support-vector-drawable:25.1.0
com.android. support:support-compat:25.1.8

rom_ andnadid ronsont s sandmatad voacton AnoaaaklaAacC 1 4

2.2.2 Transitive dependencies
So it’s the moment we talk about transitive dependencies. By the way, you shouldn’t because gradle
do it for you with smart algorithms. But sometimes we need to make it ourselves.

We can exclude transitive dependencies of a libraries using the transitive flag, like this:

compile ('com.android.support:appcompat-v7:25.1.0', {
transitive= false

})
The effect is immediate, using a gradlew androidDependencies:

adlew androidDependenci
has been depr

Inputs.s ct) ecated and is
droidDeper

com.android.support:appcompat-v

com.android.support:appcompat-v

BUILD SUCCESSFUL

We can also exclude specific dependencies from a library:

androidTestCompile ('com.android.support. test.espresso:espresso-core:2.2.2"',

{

exclude group: 'com.android.support', module: 'support-annotations'
1)
It’s what we do in our build.gradle by default for resolving conflict (by the way, | don’t catch it).

2.2.3 signingReport
This task is really cool too, it show you what are the signing configuration of your project, which is a
really important element when managing several flavor and build type.

So it shows you all your signature key like that:

19

rapp:signingReport

none

Which is definitely cool when your project have to register on api server like Google Api. All the shal
you need to have are just displayed here and in a glance you see how many keys you need to
register. The magic trick.

2.2.4 sourceSets
This one show you for each variant where are the information of your project. What is the task for
compiling this variant, where are the sources (java,manifest,res,assets,...).

So it gives you a good vision of your project’s variants parameters.

20

Project :app

2.3 Build tasks family
In this family we have assemble***, build*** and compile***. Each of them has a declination

depending on the variants (Debug/AndroidTest/Release...) they apply on. Those declination depends
on the task.

2.3.1 assemble:
It will create your apk and your report (lint and merge) for all your variants.

21

[2 MultiplicationBasile D\ Git\ My Projets\MultiplicationBasile
3 .gradle
[idea

5 Mbuild

[generated
[intermediates
B outputs
[apk
il app-debug.apk
i}y app-release-unsigned.apk
B logs

5] manifest-m erger-debug-report.td

El manifest-merger-release-report.tet
EI lint-results-release-fatal.html

[T
5 lint-results-release-fataloml

[tmp

AssembleDebug will do the same but only for the debug variant and so on for ***Release...
2.3.2 compile

It launch the “compilation” of a specific set. Here compilation means prepare the files needed for
creating the apk. For example compileDebugSources will manages your ressources for the debug.

22

i app
build
generated
res
pngs
debug
drawable-anydpi-v21
drawable-hdpi
drawable-ldpi
drawable-mdpi
drawable-xhdpi
drawable-xxchdpi
drawable-woochdpi
SOUrce
aid|
5 debug
apt
5 debug
buildConfig
5 debug
r
5 debug
android. support.v7.appcompat
com.android2ee.basilemultiplica
intermediates
3 blame
[classes
exploded-aar
[incremental
3 incremental-safeguard
[manifests
3 res
3 symbols
(| acutputs
[logs
=| manifest-rmerger-debug-report.td
3 tmp

When assembling you always call all the differents compile*** task.

2.3.3 build
Build will assemble and test the project... Test the project ?0? In fact it will run your Unit tests not

your instrumentation tests. We will see that we have specific tasks for instrumentation tests. So
don’t be too confident on build.

By the way, you have all the reports of your unit tests and lint generated and also the apk:

23

L% app
3 build
[generated
[intermediates
B cutputs
[apk
il app-debug.apk
!ﬂ. app-release-unsigned.apk
B3 logs
EI lint-results-debug.htrml
o lint-results-debug.xml
EI lint-results-release-fatal.html
E lint-results-release-fatal.xoml
[tests
7 testDebugUnitTest
1 testReleaselnitTest
[test-results
B tmp
[libs

If you open a test report you’ll have a web site describing your tests, their results.

Test Summary

1 0 0 0s 100%

tests failures ignored duration

successful

Packages Classes
Package Tests Failures Ignored
com.android2ee basile.multiplication 1 0 0

Generated by Gradle 3.3 at 2 mars 2017 22:01:13
The same occurs for lint reports.

2.4 Install tasks family

Duration Success rate
Os 100%

Those family assemble and then install specific variants on all connected devices or uninstall them.

:app:assembleDebug UP-TO-DATE
:app:installDebug

Installing APK ‘app-debug.apk' on 'Nexus 5X - 7.1.1' for app:debug

Installed on 1 device.

BUILD SUCCESSFUL

24

2.5 Verification task family

2.5.1 check
This task run all the checks... blurry description in fact. This task runs all Unit test for all variants and
also generates Lint reports. But still doesn’t run your instrumentation tests.

2.5.2 clean
This task is simple, it just delete the build folder.

2.5.3 connected**
Here comes your instrumentation test.

The task connectedAndroitTest installs and runs your instrumentations tests for all flavors on all
connected devices :0) Yes we have it.

The task connectedCheck runs your unit tests on connected device (why? Tell me why running unit
test on devices or emulator?)

The task connectedDebugAndroidTest installs and runs your instrumentations tests for debug
variants on all connected devices.

2.5.4 lint***
Run lint on all or specific flavors.

2.5.5 Test***
Run unit tests on all or specific flavors.

2.6 Others details

2.6.1 Creating the fullBuild task
We saw that the build task is only running assemble and check. What if we want a fullBuild that runs
clean assemble check and connectedAndroidTest ?

Let’s do it.

If you want to define a task, you do it for your whole project, in root project build.gradle :

Il Top-level build file where you can add configuration options common to all sub-projects/modules.

buildscript {
repositories {
jcenter()
}
dependencies {
classpath ‘com.android.tools.build:gradle:2.2.3"
classpath ‘io.balto:balto-plugin:2.0.2"
/I NOTE: Do not place your application dependencies here; they belong
/[in the individual module build.gradle files
}
}

allprojects {
repositories {
jcenter()

25

task clean(type: Delete) {
delete rootProject.buildDir

}

task fullBuild(dependsOn: [":app:build’,"app:connectedAndroidTest']) {
doLast {
println ‘Done’
}

Ok, it’s done. | have defined the task fullBuild that depends on the task build and
connectedAndroidTest of my module app. So when | will run it, it will run build and then
connectedAndroidTest. So | will have a real build with all my tests done (if | plug a device or an
emulator). This can be usefull when you play with Jenkins.

2.6.2 Android Gradle DSL
To go further you can see the description of the Android Gradle DSL and use it:

https://github.com/google/android-gradle-dsl

And you have the Gradle SDK (in a way) that you can use to customize task and know their
parameters.

2.6.3 Build profiling
Sometimes your build takes too long and you want to profile it, just add --profile and you have the
time report of your build (in rootproject/build/report/profile/)

Profile report
Profiled build: assemble

Started on: 2017/03/02 - 23:06:36

Summary Configuration Dependency Resolution Task Execution
Description Duration
Total Build Time 7.299s
Startup 1.001s
Settings and BuildSrc Os
Loading Projects Os
Configuring Projects 0.360s
Task Execution 5.321s

3 Simpler with AndroidStudio

| can do all that with AndroidStudio by clicking on the specific task | want to run. It’s hidden in the
right bar:

26

https://github.com/google/android-gradle-dsl

Gradle projects &5~
G+—-— @ Ik 4+ B
v MultiplicationBasile
b {E} MultiplicationBasile (root)
v (& :app

v L@ Tasks

v [g android
4 androidDependencies

¥ signingReport
£ sourceSets
v [build
¥ assemble
£ assembleAndroidTest
4 assembleDebug
assembleRelease
£ build
¥ buildDependents
£ buildMeeded
£ clean
£ compileDebugAndroid TestSources
& compileDebugSources
L compileDebugUnitTestSources
% compileReleaseSources
£ compileReleaselnitTestSources
£ mockableAndroidlar
v [ghelp
£ buildEnvironment
£k components
dependencies
4 dependencylnsight
4 help
£ model
£ projects
£ properties
£F tasks
v [install
¥ installDebug
£F installDebughndroidTest
£F uninstallAll
£ uninstallDebug
£ uninstallDebugAndroidTest
#¥ uninstallRelease
b [d other

b 3 verificatinn

3pRID o, duded) |

[BPOIN PIOIPUY Sy

Event Log [E] Gradle Console

31:1 CRLF# UTF-8* Context <no context> v &

27

4 Conclusion

When | finished to write this article | was, “Ok dude, there are the android tasks, now | know them,
but | don’t use them and everything can be done using AndroidStudio in a better way”. Yep, an
unnecessary article in a way but perhaps, | make the first step to understand tasks and perhaps | it
will be useful when trying to make deployment, delivery or continuous integration. | will see but |
didn’t found anything that will help me in my daily coding.

28

Chapter3: Flavors, BuildTypes and Variants

Let’s keep discovering Gradle and now it’s time to talk about flavors, build types and variants. Yes. All
the discussion here belongs to your module (not the project) build.gradle.

Flavors is the ability to overwrite files at compilation time. We have a lot of tricks to adapt our code
behavior depending on context (connectivity, battery, lowram device, gingerbread) using interfaces
and factories. But until now, it was not possible to easily build several flavors of a same product and
so adapt our product at compilation time.

And this magi is Flavors. But let’s begin by the beginning and let’s have a look at the build type
notion.

5 BuildTypes

By default there are two build types: the one for debug and the one for production.

It’s not compile time adaptation because you don’t release to the public a debug version. Build type
are really part of the process development more than a customization of your application.

We generally have this bloc in our android block (of our build.gradle):

signingConfigs {
release {
storeFile file ("javaKeyStore. jks")
storePassword "passwordOfTheJks"
keyAlias "keyName"
keyPassword "passwordOfTheKey"

}

buildTypes {
release {
minifyEnabled true
shrinkResources true
signingConfig signingConfigs.release
proguardFiles getDefaultProguardFile ('proguard-android.txt'),
'proguard-rules.pro'
}
debug {
applicationIdSuffix '.debug'
versionNameSuffix '.debug'
}
}
This is the most generic buildTypes you can have.

When we look at the release block, we have the signingConfig to sign the apk for the release. When
have enabled shrink and minify to remove the unnecessary code and resources. We run proguard to
obfuscate our code.

A word about proguard: It’sa pain, especially when you have lirbaies in your project. A trick: Make
often release build to see if something have changed don’t wait the day before the release to
production, you'll regret.

29

When we look at the debug blog, we have the suffix added. The one for the application is the most
important, it give us the ability to deploy on the same device the both version (it’s related to the
unicity constraints on {applicationld,signatureKey}.

WEe'll see in another chapter how to extract your password and id into properties files, avoiding

having them in the git repo or in the project (security reasons).

6 Flavors

Let’s start with an example. | made a quick application for my son to learn multiplication tables.

QENAVA S FOPLL1950 | 9 EN AW G & 3O W 1952

Quelle est la table que tu souhaites . Temps:t08s D

apprendre ? 0pts 1/10
1x9="?
1 2 3
4 5 6
7 8 9 0 1 2 3

Uniquement cette table Non

And | said to myself, why don’t | do one for my daughter too ? One for multiplication, the other for
addition with specific branding for each of them.

But | don’t want to copy paste the project and start a second one. Because | will lose all the
improvements done on the other project. Complex branching system using git... No, too hazardous
and full of merges. | could also have make a core library, but what a mess for a simple request:

| just want to customize pieces of my code, living the architecture at the center and customize the
features according to a specific branding.

The answer is flavors.
When you compose buildTypes and flavors, it gives you build variants.

6.1 Basics
So | create it:

productFlavors({
basile({
}
lila{
applicationId "com.android2ee.lila.multiplication"”

}

30

And then, | run gradlew sourceSets and compare with what it was before. | remove content and keep
only head chapter to gain in visibility:

When | run sourceSets without flavor: When | run sourceSets after creating the
flavors:
androidTest androidTest
debug androidTestBasile
main androidTestLila
release basile

test basileDebug
testDebug basileRelease
testRelease debug

lila

lilaDebug
lilaRelease

main

release

test

testBasile
testBasileDebug
testBasileRelease
testDebug
testLila
testLilaDebug
testLilaRelease
testRelease

And yes, sourceSets shows you for each variant where are the information of your project. What is
the task for compiling this variant, where are the sources (java,manifest,res,assets,...).

But another vision is sourceSets lists all the subfolders your can create in your application module to
overwrite specific elements depending on a variants (flavor:Basile, build type:Release) and tests.

And that all. You want to overwrite a specific file, for exemple ic_launcher, because in Debug for Lila
you want it with a smile, just define it under :

lilaDebug/res/mipmap-***/ic_launcher

If you want a specific for all lila variants, just do it in lila folder, and it’s done:

31

v [Eapp
» [build
[libs
v e

b [addition

b [androidTest
b [basile
v

[lila

» Ejava
v [res

¥y y¥Yvy

>

[drawable

1 layout

3 layout-land

1 mipmap-hdpi
ic_launcher.png

1 mipmap-mdpi

3 mipmap-xhdpi

1 mipmap-xchdpi

3 mipmap-oechdpi

[values

3 AndroidManifest.ml

Iy v ¥

| mean, it’s done:

[main
3 multiplication
[test

32

Multiplicati.. Addition Lila

Flavors

I "EERTTTEEY VU

It works the same for all the resources and Java code. You just need to overwrite the file defined in
main by your in the variants you want. It’s based on the path of the file.

So flavors are ordered and it’s important because it will defined how files are overwrited. For
example, in BasileMultiplicationDebug, if the same element is defined in Basile and Multiplication,
the one of Basile will be the one that stays, overwriting the one of multiplication. We'll see the flavor
Multiplication latter).

The other important information to have here is:
Flavor’s resources can overwrite main’s resources
Flavors’ Java code CAN NOT overwrite those of main.
Most of time, on the project, you have mocked and prod flavors, where

e mocked is a flavor for test where all your services/dao/communication is mocked and
dedicated to unit test/ integration tests

e prod is the flavor where you have your real application’s bricks bound together

They belong to the same dimension “TestContext” or something like that.

33

v Csrc
» [addition
» [androidTest
v [basile
v [java
EJ com.android2ee basile.multiplication.service
v E&res
EJ drawable
E7 layout
E3J layout-land
v [EJ mipmap-hdpi
ic_launcher.png
7 miprap-mdpi
EJ mipmap-xhdpi
E7 mipmap-mchdpi

Yy y¥Yvy

EJ mipmap-oochdpi
b [values
EhndroidManifest.xml

v Cliila

r [java
v Cres
[drawable
[layout
3 layout-land
v [mipmap-hdpi
ic_launcher.png

3 miprmap-mdpi

3 mipmap-xhdpi

3 mipmap-xchdpi

Yy y¥Yvy

3 mipmap-wochdpi
b [values
EhndroidManifest.xml

v [main

v java
b [0 com.android2ee.basile.multiplication
v :Eres
» [drawable
Bl layout
b [layout-land
b [values
b [values-wi20dp
EhndroidManifest.xml
ic_launcher-web.png
b ™1 multinlication

34

6.2 Dimensions

Then | though, ok, but Lila won’t learn multiplication, she is too young, let’s start with additions....
But wait, réfléchissement jean-pierre, one day, she will also make multiplications, so do | create two
flavors instead of only one : lilaAddition and lilaMultiplication.

Yes, but no, | will think in terms of dimension :

Addition Multiplication
LilaAddition LilaMultiplication
BasileAddition BasileMultiplication

So | will say, | have two types of flavor, one is the kids and the other is operation. And if | could easily
explain that basile doesn’t need his addition dimension, it will be cool.

So let’s go:

android {

//Give a name to your dimension
flavorDimensions "enfants'", "operator"
//define your flavors (as one flavor has a dimension they must all have
one)
productFlavors {
basile({
dimension "enfants"
}
lilaf
dimension "enfants"
applicationId "com.android2ee.lila.multiplication"
}
multiplication({
dimension "operator"
}
addition{
dimension "operator"
}
}
//Remove the BasileAddition and LilaMultiplication flavor
android.variantFilter { variant ->
if (variant.getFlavors () .get (0) .name.equals('basile')
&& variant.getFlavors () .get (l) .name.equals('addition')) {
variant.setIgnore (true) ;
}
if (variant.getFlavors () .get (0) .name.equals('lila')
&& variant.getFlavors () .get(1l) .name.equals ('multiplication')) {
variant.setIgnore (true) ;

}
}

Remember | have declared kids first, so the code and resources of the kids flavor will always
overwrite those from operator and main.

In your flavor description you can define the following attributes:
e applicationld

e minSdkVersion

35

e targetSdkVersion
e versionCode

e versionName

e signingConfig

The last block is a little bit amazing, but we’ll see that in another chapter more focus on task. The
idea is to browse your flavors list and filter it based on flavor’s name.

And | was also able to say, | will do it latter the LilaMultiplication one.

So when | run sourceSets, what happens ?

addition debug testBasileMultiplication
androidTest lila testBasileMultiplicationDebug
androidTestAddition lilaAddition testBasileMultiplicationRelease
androidTestBasile lilaAdditionDebug testDebug
androidTestBasileMultiplication | lilaAdditionRelease testlila

androidTestLila main testLilaAddition
androidTestLilaAddition multiplication testLilaAdditionDebug
androidTestMultiplication release testLilaAdditionRelease
basile test testMultiplication
basileMultiplication testAddition testRelease
basileMultiplicationDebug testBasile

basileMultiplicationRelease

Et bien, ¢a en fait du monde. A lot of variants.

But at the ends, with only few changes and some copy/paste (yes, to create the flavor at first,
copy/paste the folders from main to your flavor using the explorer, not in AS, to have the folders’
structure), | achieve that:

CENAWAO S POPL L1950 QENALAWAO S %0 W4 w1952

Quelle est la table que tu souhaites . Temps:ioss [

apprendre ? 0pts 1710
1x9="7
1 2 3
4 5 6
7 8 9 0 1 2 3

Uniguement cette table Non

36

3T W4 @ 21:09

Quelle est la table que tu souhaites . Temps:mes b

apprendre ? 0 pts 1/10
3+8=7
1 2 &
4 5 6
7 8 9 0 1 2 3

Uniquement cette table Oui

< 0} (m] N O]

And using AS, it’s really easy, you have the build variants at the bottom right to help choose which
variant you want to deploy:

Build Variants - 1=
Module Build Variant

[app @ lilaDebug

O = T = T = T = L T = L = L 4

7 Step by step example

7.1 Gradle file
Let’s say | did my build.gradle file like explained:

android {

//Give a name to your dimension
flavorDimensions "enfants", "operator"
//define your flavors (as one flavor has a dimension they must all have
one)
productFlavors
basile({
dimension "enfants"
}
lila{
dimension "enfants"
applicationId "com.android2ee.lila.multiplication”
}
multiplication({
dimension "operator"
}
addition{
dimension "operator"
}
}
//Remove the BasileAddition and LilaMultiplication flavor
android.variantFilter { variant ->

37

if (variant.getFlavors () .get (0) .name.equals ('basile')
&& variant.getFlavors () .get(l) .name.equals('addition')) {
variant.setIgnore (true) ;

}
if (variant.getFlavors () .get(0) .name.equals('lila’)
&& variant.getFlavors () .get(1l) .name.equals ('multiplication')) {
variant.setIgnore (true) ;

}
}

Note that with this gradle configuration | can deploy on the same device, Lila and Basile application
because | change the applicationld for the Lila flavor.

Now, using AndroidStudio, build variants bar, | just have to select the build | want to deploy on the
phone and click on the green arrow, like usual.

=W H |

Build Variants - I-
Maodule Build Variant
[app) lilaAdditionDebug

basileMultiplicationDebug

basileMultiplicationRelease
lilaAdditionDebug

lilaAdditionRelease

Android Monitor

| B LGE Nexus 5X Android 7.1.1, API 25 n | No Debuggable Processes n
=1 ifi |logcat | Monitors —+°
o
ﬁ at anc
(5'3:_ at anc
& at das
o) at das
'E - + at dagv

7.1.1 Cutsom task: print variants name

If | want to make a task that write the name of all the variants of the project. | have to define it in my
build.gradle (always the same), like this :

task printVariantsName () {
doLast{
android.applicationVariants.all{ variant ->
println variant.name
}
}
}

So this code defined a task name printVariantsName and we that launched, when it has finished the
“job”, an action (real word is closure). This action just ask the android plugin to give us all its variants
(android.applicationVariants.all). We take each variant one by one and print its name (variant ->
println variant.name).

If I run it I have the following outputs:
lilaAdditionDebug
lilaAdditionRelease

basileMultiplicationDebug

38

basileMultiplicationRelease

Damned it, all this job to have the same result than in AndroidStudio with one click on a bar:)

7.2 Setting your folders structure
Ok, from my point of view, the best way and quickest way to create your folders structure is to use
the files explorer or your system.

You first create your flavors folder. Then you copy paste src and res from main to all the flavors you
created. And then delete all the files that are not folders in your flavors (be smart do it at the first
paste...).

You're structure is finished you can go to work.

7.3 Customizing Resources
| want to customize strings, colors and icon launcher picture. All those elements are resources, so |
have to copy paste them in lila and basile and adapt them as desired.

As | have no customization related to tests or instrumentation tests, | don’t have to create more
folders than my flavors declared. But if you want to customize a tests context, you can do it by
creating the associated variant folder (like when running sourceSets).

A really good practice is to overwrite (copy files) only the resources you overwrite (really change). It
means, don’t copy by default all the files from main to yours flavors, do it only for files you change. |
spent a quarter, adding a switch in a layout with no result because | had copied/pasted this layer also
in the basile’s flavor without paying attention.

7.3.1 Drawables customization

Let’s begin by changing the icon of the application. For that the only stuff to do is to overwrite the
ic_launcher (*dpi) in Lila and Basile flavors. To do that, just use the Android Studio Image creation
wizard and create your ic_launcher for each flavor.

The last screen of the wizard with the button finish has a combo at its top where you define the
flavor for this picture. Exactly what we need:

39

® Asset Studio x

Confirm lcon Path

, (Android Studio

Res Directory: srchmain'res

Output Directories:
srchlila\res

srchbasilelres

srchmultiplication'res

src\addition'res
srctlilafddition'res
srchlilaAddition\res
srchbasileMultiplication\res

% ic_trondroid. prg

[mipmap-xhdpi
% ic_irondroid.png

[mipmap-whdpi
” ic_trondroid.prg

[mipmap-wathdpi

ﬂ\ ic_irondroid.png

(v] [] [concet | (D (e)

So you just have to create your mipmap and it’s done.

This is the result in my folder’s structure:

40

. Packages [Scratches lﬁl Android | ﬂ Project Files ‘ # Problems | [

0 = | 81

>

L A A

v

L A A

v

»

»

4 ¥ ¥

vy ¥ ¥ ¥ ¥

[androidTest
© [basile
v Ejava

D com

v Elres

[drawable

7 layout

[layout-land

3 mipmap-hdpi
ic_launcher.png

3 mipmap-mdpi

[mipmap-xhdpi

3 mipmap-wndhdpi

[mipmap-woehdpi

[values

EAndroidManifest.xml
v Biila
F [java
v E&res

[drawable

7 layout

[layout-land

1 mipmap-hdpi
ic_launcher.png

1 mipmap-mdpi

EJ ripmap-xhdpi

[F1 mipmap-wndhdpi

7 mipmap-woahdpi

[values

EAndroidManifest.xml
© 1 main

v [java

[com.android2ee basile.multiplication

v Eﬁres

[drawable

7 layout

[layout-land

EJ mipmap-hdpi
ic_launcher.png

EJ mipmap-mdpi

1 mipmap-xhdpi

EJ mipmap-schdpi

1 mipmap-eochdpi

51 values

7.3.2 String Cutomization
For the string, | did the same, but this time | copied/pasted the files instead of using a wizard and |
delete the strings | didn’t change:

lila/res/values/string.xml

41

1 lila
[java/com/android2ee/basile/multiplication/view/dialog
[res
3 mipmap-hdpi
3 miprmap-mdpi
3 mipmap-xhdpi
3 mipmap-xchdpi
3 mipmap-rochdpi
[values
3 colors.xml

|
&5 drawable_flavors.ml

strings.xml
[
=3 etyles.xml

EﬂndroidManifest.xml

<resources>

<string name="app name">Addition Lila</string>

<string name="ass_act toolbar title">Lila apprend la table de
1d</string>

<string name="ass_act toolbar subtitle">Elle est trop forte
Lila</string>

<string name="question_string">%15d + %25d = %3%d</string>

<string name="question string init">%1$8d + %2Sd = ? </string>

</resources>

basile/res/values/string.xml

[basile
[java
E& res
3 mipmap-hdpi
1 mipmap-mdpi
3 mipmap-xhdpi
1 mipmap-xchdpi
3 mipmap-oechdpi
[values
E colors.xml
E dimens.xml
E drawable_flavors.ml
o styles.ml

E AndroidManifest.xml

<resources>

<string name="app name">MultiplicationBasile</string>

<string name="ass_act toolbar title">Basile apprend la table de
1d</string>

<string name="ass_act_ toolbar subtitle">I1 est trop fort
basile</string>

<string name="question_ string">%15d x %25d = $3%d</string>

<string name="question string init">%1$8d x %2$d = ? </string>

42

</resources>

main/res/values/string.xml

1 main
[java
[res
[drawable
3 layout
[layout-land
3 menu
3 mipmap-hdpi
3 mipmap-mdpi
[mipmap-xhdpi
3 mipmap-chdpi
[mipmap-wochdpi
[values
E colorsxml
E dimens.xml
E drawable_flavors.xml
Eiﬂym&xml
3 values-wa20dp
Eﬂndrnidhﬂanifest.xml

<resources>

<string name="app name">Default Title</string>

<string name="ass_act_toolbar_ title">Basile apprend la table de
1d</string>

<string name="ass_act_ toolbar subtitle">Il est trop fort
basile</string>

<string name="question string">%1Sd x %25d = %3%d</string>

<string name="question_string init">%135d x %2$d = ? </string>

<string name="mainact max multiplication_value">Quelle est la table que
tu souhaites apprendre ?</string>

<string name="mainact maxvalue edt hint">Tape un nombre</string>

<string name="mainact_ txvTemps">Temps : %1$ds</string>

<string name="mainact_ txvScore">%1$d pts</string>

<string name="mainact_ txvQuestionNumber">%1$d/%$25d</string>

<string name="mainact_ answer edt_hint"> \? </string>

<string name="mainact_ start">Start</string>

<string name="mainact switch positive">Oui</string>

<string name="mainact_ switch negative">Non</string>

<string name="mainact_ switch question">Uniquement cette table</string>
</resources>

The important element to pay attention here is the string.xml of lila and basile flavors contain only
strings that need to be adapted to the flavor. You don’t have to copy all default strings. It’s exactly

43

the same with you res folder drawable-hdpi/-mdpi-ldpi... The system merge the resources in a
natural way. With flavor, always take attention to duplication and avoid it if unnecessary. Because,

With flavors when mess comes, mess is huge.

You can or not delete the string in main/string.xml already defined in all the flavors, but it’s not as
obvious as it looks first that the good practice. That’s why | let them in my string.xml file. | prefer
string error than NPE and | am not sure that this string has to be translated for all the flavors.

7.3.3 Colors customization

Then | want to specify colors to use for each flavor. So | copy my main\res\values\colors.xml to
lila\res\values\colors.xml and basile\res\values\colors.xml. | change the values | want, especially the
color Primary, PrimaryDark and Accent, because | rely on the support library.

lila\res\values\colors.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
<color name="colorPrimary">#fc2cbe</color>
<color name="colorPrimaryDark">#cc0c93</color>
<color name="colorAccent">#40ff70</color>
<color name="shape default stroke">#d4d4d4</color>
<color name="shape default solid">#d4d4d4</color>
<color name="item background translucent">#999%e9c9c</color>
<color name="item background opaque">#5fd5def2</color>
</resources>

basile\res\values\colors.xml

<?xml version="1.0" encoding="utf-8"7?>
<resources>
<color name="colorPrimary">#3F51B5</color>
<color name="colorPrimaryDark">#303F9F</color>
<color name="colorAccent">#0db656</color>
<color name="shape default stroke">#d4d4d4</color>
<color name="shape default solid">#d4d4d4</color>
<color name="item background translucent">#999e9c9c</color>
<color name="item background opaque">#5fd5def2</color>
</resources>

7.3.4 Resources Redirection

Sometimes, it’s usefull to have some concept on resources redirection. The typical example is you
use a resource A which is used by a resource D, but D is also use for another resource C and you want
to customize D within A but not within C. For example, D is a drawable, A is a layout (D is used as
background) and Cis an ImageView (and D is used as android:src or through code with
setlmageResource).

The simple way is to duplicate D and create DWithinA and DWithinC and customize DWithinA in your
flavors. But, if D is drawable, you increase the size of your apk and the number of files in your project
which is not a good idea.

Let’s assume, D is a drawable. | make a redirection to it, | create a file called
resources_flavor_redirection.xml in main:

44

[main

[java

E& res
[drawable
[layout
3 layout-land
3 menu
3 mipmap-hdpi
1 mipmap-mdpi
3 mipmap-xhdpi
1 mipmap-xchdpi
3 mipmap-oochdpi
[values

E colors.xml

[.
& dimens.xml

1 resources_flavors_redirection.xcml
s

strings.xml

L
[

3 styles.ml

-~

And add the redirection inside:

<?xml version="1.0" encoding="utf-8"7?>
<resources>
<drawable
name="main_act_keyboard background">@mipmap/ic drhulk</drawable>
</resources>

Then in A, which is in the example, the “background” of a layout in my main_activity.xml layout:

...<FramelLayout

android:layout width="wrap content"

android:layout height="wrap content"

android: foregroundGravity="center">

<ImageView
android:layout width="285dp"
android:layout height="285dp"
android:src="@drawable/main_act keyboard background"/>

<include layout="@layout/keyboard"
android:visibility="visible" />
</FrameLayout>...

Then | just have to play the flavors game with my resources_flavor_redirection :

lila\res\values\ resources_flavor_redirection.xml

45

1 lila
[java/com/android2ee/basile/multiplication/view/dialog
[res
3 mipmap-hdpi
1 mipmap-mdpi
3 mipmap-xhdpi
1 mipmap-chdpi
3 mipmap-cochdpi
[values
colors.xml
resources_flavors_redirection.xml
strings.xml
styles.xml
EhndrnidManifest.xml

167 187 183 I8

<?xml version="1.0" encoding="utf-8"7?>
<resources>
<drawable
name="main_act_keyboard background">@mipmap/ic spiderdroid</drawable>
</resources>

basile\res\values\ resources_flavor_redirection.xml

[basile

[java

& res
1 mipmap-hdpi
3 mipmap-mdpi
1 mipmap-xhdpi
3 mipmap-ochdpi
3 mipmap-xachdpi
[values

E colorsxml

Y .
& dimens.xml

resources_flavors_redirection.xml

strings.xml
styles.xml
E AndroidManifest.ml

<?xml version="1.0" encoding="utf-8">7>
<resources>
<drawable
name="main act_ keyboard background">@mipmap/ic captaindroid</drawable>
</resources>

And for the C component, nothing have changed. | can still use the initial D drawable without risk of
missed overwriting issues, like in that line of code:

46

//then create you Dialog itself
builder.setIcon(R.mipmap.ic_captaindroid)

// Set Dialog Title

.setTitle ("Game Over")

// Set Dialog Message

//.setMessage ("Alert DialogFragment Tutorial'')
//or your specifc view

.setView (view)

7.3.5 Declaring Resources in your gradle’s flavor block
We can define attribute in our flavor block (and in our gradle file by the way).

For example:

defaultConfig {
resValue "string", "hidden_ string", "I love you my sweety"
}
//Give a name to your dimension
flavorDimensions "enfants", "operator"
//define your flavors
//(as one flavor has a dimension they must all have one)
productFlavors({
basile{
dimension "enfants"
//resValue "boolean","basile dimension","true" -> not allowed
//resValue "int", "int allowed"”, "1" -> not allowed
resValue "string", "hidden_ string", "I love you my basilou"
resValue "color", "int allowed", "#FFOOff"
}
lila{
dimension "enfants"
applicationId "com.android2ee.lila.multiplication"
resValue "string", " hidden_ string ", "I love you my Lila"
resValue "color", "int allowed", "#FFOOEE"
}
multiplication{
dimension "operator"
}
addition{
dimension "operator"

}

And you can use them in your code or your build or your manifest.

if (BuildConfig.isallowed) {
Log.e(TAG, "BuldConfig IsAllowed and ResValue "
+getString (R.string.hidden string)) ;

But | met problem with bool, int and others values, so | am a little disappointed.

7.3.6 Run your project(s)
It's over, our customization is finished, we can run the project. To do so, select the build you want
and run it:

47

S W

Build Variants

Module

Build Variant |

@ app

Android Maonitar

o

lilaAdditionDebug

basileMultiplicationDebug
basileMultiplicationRelease

lilaAdditionReleaze

E LGE Mexus 5X Android 7.1.1, API 23 n l MNo Debuggable Processes

Tu peux aussi frimer en le faisant via gradlew install** si t’es en mode surfeur :)

You obtain:

Both applications are installed and they have their own icon:

Mitiplicati. Addition Lita

Dossler sans nom

The Basile’s application:

48

=1 ifi logcat | Monitors —+°

o
m at anc

@ - at anc

& at das
+

) at dax
+

o at dav

Dbl 41 bl Labde pust B Sn it b4

appendng T - - o R ke A 8
s v
i (')Q, Sabde &0 &
4 -
Q '
2 - o) (1) (2)(2 ¢o
) (E (&) (7 ~o
G B % = 0

And the Lila’s application:

(L-L PRI

B e

7.4 Customizing Java code
The rule:

Flavor’s resources can overwrite main’s resources
Flavors’ Java code CAN NOT overwrite those of main.

It means, in Java, you can not have a class overwritted for a specific flavor and have its default
behavior defined in main. You need to remove the class from main and paste it in all your flavors.
This force all others flavors to define this class. And it’s a huge constraint.

So, back to our example, one of my goal was to make a basile application to learn multiplication and
a Lila one to make addition.

This is where Java code customization is needed in my project.

49

To do that, | just extract the operation * (everywhere a multiplication is done bound to the
assessment process) from all my code and create a Java class called AssessmentOperation with one
method public int calculate(int value, int factor)

That way, | extract the code | want to customize in a single small class. You will always have to
refactor your code to make that isolation, else you will have too much code duplication.

So | create, in the flavor addition and multiplication (the ones in the “operator” dimension), my class
AssessmentOperation. And | removed it from main:

v [CHapp
» [build
[libs
v [Dsrc
v addition
v [java
v [com
v [android2ee
v [basile
v [multiplication
v [service

o AssesmentOperation.java

b [androidTest
b [basile
o lila
v rmain
v Ejava
v [EJ com.android2ee basile.multiplication
b [cross
b [dao

v SEMVICE

£ B AssesmentService
(£ % AssessmentRules
b [view
L Mybpplication
L4 EE res
3 AndroidManifest.ml
v multiplication
v [java

v 1 com.android2ee.basile.multiplication.service

B & AssesmentOperation

then | just have to implement my method in each flavor (addition, multiplication):

multiplication\AssesmentOperation

public class AssesmentOperation {

public static int caculate (int value,int factor) {
return value*factor;

50

addiotion\AssesmentOperation

public class AssesmentOperation ({

public static int caculate (int value,int factor) {
return value+factor;
}
}
And it’s done.

In my main flavor, | just call that method like that:

multiplicatorFactor([i]=

getMultiplicatorValue (position,multiplicationTable) ;

value[i]= getValue (position, multiplicatorFactor[i],multiplicationTable);
answer [i]=AssesmentOperation.caculate(value[i],multiplicatorFactor[i]);

And here comes the result:

3@ €4 E 1346 % © €' E13:50

51

Chapter 4: Flavors And Manifest

There is a specific use case | want to talk when playing with flavors.

Imagine you have made 2 flavors WhiteBands and CatBus in the dimension “brand” and your main
flavor contains all your architecture code.

That way, setting your architecture in main, you don’t have to copy/paste project to reuse your
architecture or create sdk that imprisoned your developers or worst a framework that not even
created is already deprecated.

The flavor WhiteBands is the project where you code a sample application that show cases to all the
others teams how to use the architecture and how to code most of the use cases.

The flavor CatBus is the final product. The objective is to be able to use your architecture, to reuse
the “good pattern” code of WhiteBands and to be free to implement what is needed to be.

And in this configuration, you know that you’ll have several teams playing the game; dog, bird,
canary, horse and so on. So they will fork you initial project (with main and WhiteBands) and create
their own flavor DogBus and go in the build of their product on safe foundations.

Funny game, isn’t it?

To make the parallel with my tutorial, you can imagine basile is WhiteBands, lila is CatBus and you
have your comprehension.

So in this scenario, one main problem that occurs is the initialization of some libraries in the onCreate
of your MainApplication object. Because we do a lot in our Application object and we need to define
it in main for our architecture. And as you know, if you let a Class in main, you cannot overwrite it in
a specific flavor. That works only for resources, not for java code. So you are screwed.

So, how can | initialize my library? | cannot overwrite the code of MainApplication using flavor.
In fact it’s not the right question, the question is:

e how can | create MyLilaApplication object in the flavor lila
e that extends the MainApplication defined in the main flavor and
e explain to android that the Application object of the application is MyLilaApplication ?

If I can do that, | initialize my library in the onCreate of MyLilaApplication object. And such a solution
will also work for Services and BroadcastReceivers defined in the main flavor.

So let’s do that.

8 In practice
Ok, so it’s simple until it won’t be.

| create my new MyLilaApplication in the Lila flavor that extends MainApplication defined in the main
flavor.

| just overwrite onCreate and do a log, normally, you initialize elements here (like libraries).

52

public class MyLilaApplication extends MainApplication {

@Override
public void onCreate() {
super.onCreate () ;
//I do somthing
//1like intializing a specific library
Log.e("MyAppInitializer", "Second choices, a log is enough to prove
the concept: MyLilaApplication");
}
}

Then the next step is explain to the system that Lila’s flavor application object is implemented by
MyLilaApplication.

We do that as usual in the manifest (the one of the flavor Lila):

[lila
[java
1 com.android2ee.basile.multiplication
7 service
7 view.dialog
e MylilaApplication
[res

1 AndroidManifest.oml

-

So | update the manifest like this:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.android2ee.basile.multiplication">

<application
android:allowBackup="true"

android:name=" .MyLilaApplication"

android:icon="@mipmap/ic_launcher"
android:label="@string/app name"
android:supportsRtl="true"
android:theme="@style/AppTheme">

<activity android:name=".view.MainActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<categoryandroid:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<activity android:name=".view.AssessmentActivity"></activity>
</application>

</manifest>

And | run my project. The Gradle build fails with this marvelous error:

Error:Execution failed for task ":app:processLilaAdditionDebugManifest'.

53

> Manifest merger failed : Attribute application@name
value=(com.android2ee.basile.multiplication.MyLilaApplication) from AndroidManifest.xml:6:9-38

is also present at AndroidManifest.xml:6:9-38
value=(com.android2ee.basile.multiplication.MainApplication).

Suggestion: add 'tools:replace="android:name
AndroidManifest.xml:6:5-21:19 to override.

to <application> element at

Et voila, shit happened.

So what is the problem? The problem comes from the merging resources proccess. As it’s simple for
the resources itself to be merge (straight overwrite strategy), the manifest is more complex to merge
and it cannot be always done in a generic way. And here is the case where generic merging strategy
fails.

Is it over? Are we screwed again ?

No, Google provides us tools to explain the merging strategy to adapt with our use case (and also
they explain us what to do in the error’s logs).

https://developer.android.com/studio/build/manifest-merge.html

The basic principle is that you can tune the merge of the different manifests. Basically when you have
several manifests to merge they inherit from each other’s, you just have to say, in the final merge,
how to consider inherited attributes. You can:

* merge
e mergeOnlyAttributes
e remove

e removeAll
e replace
e strict (generate an error when merging conflict and stop)

The explanation page is really clear, just have a look and bookmark it :)

For us, we want to replace the inherited value of android:name by the new one :

<?xml version="1.0" encoding="utf-8"7?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.android2ee.basile.multiplication”

xmlns:tools="http://schemas.android.com/tools">

<application
android:allowBackup="true"

tools:replace="android:name"

android:name=".MyLilaApplication"
android:icon="@mipmap/ic_ launcher"
android:label="@string/app name"
android:supportsRtl="true"
android:theme="@style/AppTheme">

<activity android:name=".view.MainActivity">

54

https://developer.android.com/studio/build/manifest-merge.html

<intent-filter>
<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER"

/>
</intent-filter>
</activity>
<activity android:name=".view.AssessmentActivity"></activity>
</application>
</manifest>

Don’t forget to add the name space of tools in your xml (the xmlns tag at the top).
And that’s enough.

So if we remember the code:

public class MylLilaApplication extends MainApplication {

@Override
public void onCreate() {
super.onCreate () ;
//I do somthing
//1like intializing a specific library
Log.e("MyAppInitializer", "Second choices, a log is enough to prove
the concept: MyLilaApplication");
}
}

We can run the application and obtain:

03-07 21:18:23.764 13926-13926/? E/MyAppilnitializer: Second choices, a log is enough to prove the
concept: MainApplication

03-07 21:18:23.764 13926-13926/? E/MyApplnitializer: Second choices, a log is enough to prove the
concept: MyLilaApplication

So the log of the super class MainApplication (the one coded in the flavor main) is done first, because
we call super.onCreate first (in MyLilaApplication) and the one of MyLilaApplication is done second,
like the code expect.

So we do it, yes.

8.1 The getinstance question
Doing this, a question raised in my mind, | have a singleton pattern set on the MainApplication
object. It should work fine, but am | sure?

So here is the pattern | definitely use (abuse) in my application’s architecture?

public class MainApplication extends Application {
/***

* Singleton
**/
private static MainApplication instance;
public static MainApplication ins () {
return instance;

}
55

/***

* Managing Life Cycle

**/

@Override

public void onCreate() {
super.onCreate () ;
instance=this; //Other code after

| use it a lot in my application for obtaining a context :

MainApplication.ins() .getSharedPreferences.

But also for the ServiceManager, the ThreadManager...

Let’s test a stuff, just let’s make some logs

Log.e("Application_whoRU", "The instance of MainApplication.ins()=="
+MainApplication.ins() .getClass () .getSimpleName ()) ;
Log.e("Application whoRU", "The instance of MainApplication.ins()=="

+ MyLilaApplication.ins () .getClass () .getSimpleName());

And it returns:
03-07 21:28:05.821 E/Application_whoRU: The instance of MainApplication.ins()==MyLilaApplication
03-07 21:28:05.821 E/Application_whoRU: The instance of MainApplication.ins()==MyLilaApplication

Ok, it’s cool. And watching the result, it’s clear, we didn’t have to worried, and it was obvious. But
stupid question has to be answered, and when in doubt, just test. Having doubts is a good beginning.

So nothing to change, the singleton stays in MainApplication and flavors can use it safely.

56

Chapter 5: Understanding the life cycle.

Let’s have an example to better understand a fundamental notion on gradle which is:
Don't forget about the build phases

A task has both configuration and actions. When using the <<, you are simply
using a shortcut to define an action. Code defined in the configuration section of
your task will get executed during the configuration phase of the build regardless

of what task was targeted. See Chapter 22, The Build Lifecycle for more details

about the build lifecycle.

https://docs.qgradle.org/current/userquide/more about tasks.html/

What did this sentence mean? Let’s have an example.

9 The problem

Your goal is to enable Crashlytics when you are releasing a version but to disable it during
development phase. So to do that you create a variable called enableCrashlytics and you use it, in
your code, in your application object to enable/disable Crashlytics depending on that value.

So imagine in my build.gradle file | have such a code:

apply plugin: ‘com.android.application’
apply from: ‘enableFabrics.gradle’

Where the enableFabrics.gradle file could be
Either that one

//[Enable crashltyics
task enableCrashlytics1{
doLast {
/[crashlytics (fabric)
android.defaultConfig.resValue *'string™, "‘enableCrashlytics™, ""true"
}
}
Either that one:

//[Enable crashltyics
task enableCrashlytics2{
/[crashlytics (fabric)
android.defaultConfig.resValue "'string", ""enableCrashlytics", ""true"

}

And my gradle task for releasing could be that:

/[This is the root task

task generateWeeklyReport(dependsOn: [‘enableCrashlytics*’]) {
println "Task generateWeeklyReport processing..."
/1 do nothing, In am an entry point

57

https://docs.gradle.org/current/userguide/build_lifecycle.html
https://docs.gradle.org/current/userguide/more_about_tasks.html

/1 use task dependency to launch the build

}

10 Comprehension

How gradle works? First Gradle will evaluate your project and build its gradle graph. It does that
during the configuration phase. And to do that it runs all the code that are in configuration bloc.

What is a configuration bloc? It’s a bloc that doesn’t belong to an execution action. It means if your
code is at the root of the task, not encapsulate in a doLast or doFirst blocs (there should be others), it
will run whatever happens at configuration phase.

And when is configuration phase? Each time gradle needs to run a task it starts by the configuration
phases, so each time you make a build/compile/assemble/cAT.. that code runs.

11 Solution

It means when you use the task enableCrashlytics1, its code is ran only at the execution time, when
the task is called. So when you launch your release task. The rest of the time, the variable
enableCrashlytics is set to its default value, false.

//[Enable crashltyics
task enableCrashlytics1{
doLast {
/[crashlytics (fabric)
android.defaultConfig.resValue *'string", ""enableCrashlytics", ""true"

¥
¥

But if you use enableCrashlytics2. The code is always ran at configuration phase, so the value of the
variable enableCrashlytics is always set to true.

//[Enable crashltyics
task enableCrashlytics2{
/[This code is always executed at configuration phase
/lchrashlytics (fabric)
android.defaultConfig.resValue "'string", ""enableCrashlytics", ""true"

}

12 Conclusion

Here are the tips so:

e When you make a task, split your code between execution bloc (using doLast, doFirst) and
your configuration bloc.

e Less you have code running at configuration phase, faster are your builds.

o Take the time to define which variable has to be defined and initialized depending on which
tasks use it.

58

Chapter 6: Setting code coverage on
Android with Jacoco

You also want to have your code coverage on Android, but it doesn’t work, there is a lot a tutorial
explaining how to do, github project, gradle plugin... but all this resources (most of them are
deprecated but you don’t know it) are just messing our mind and we finish by not being sure if
Android build system is able or not to generate code coverage.

But it should be simple, and in fact, it is. So instead of giving you the receipt, | prefer to give you the
understanding. Because we want and need that:

app
Element Missed Instructions Cov.+ Missed Branches Cov.: Missed+ Cxty: Missed+ Lines® Missed: Methods= Missed+ Classes
1 org kamereon.service core.cross exception.devreporter = 100% £ 79 % 3 15 0 37 0 8 0 1
3 org kamereon service core.cr manager analytic: | | 100% | 75 % 1 7 0 35 L] 5 0 1
1 org kamereon service mycms.garage view. holders 2 100 % 50 % 1 6 0 20 0 5 0 2
1 org.kamereon service core.com.common.i I 100% | 50 % 2 8 0 19 0 6 0 3
3 org kamereon service core view toolbar holder 1 100% | 100 % 0 6 0 16 L] 5 0 2
1 org kamereon service mycms. garage view.adapters I 100 % nia 0 4 0 " 0 4 0 1
1 org kamereon service. mycms.crossfeature service I 100% | 100 % 0 3 0 9 0 2 0 1
£ org kamereon service mycms crossfeature com interceptors 1 100 % n/a 0 2 0 9 L] 2 0 1
1 org kamereon service core.test view 100 % nia 0 6 0 " 0 6 0 1
1 org.kamereon service.core.cross exception.userreporter 100 % nia 0 2 0 5 0 2 0 1
3 org kamereon service core.com manager 100 % n/a 0 1 0 2 L] 1 0 1
4 org kamereon service core.view generic ator.drawable 100 % nia 0 1 0 1 0 1 0 1
1 org.kamereon service core.view toolbar.adapter I 9% | 5% 1 6 0 1 0 4 0 1
1 org kamereon service cors.cr exception || 9% % I 3% g 46 4 107 1 31 0 3
4 org kamereon service mycms.crossfeature com.wrapper 2 9%% & 71 % 5 9 3 28 1 2 0 1
1 org.kamereon service.core.com.common = 94% £ 79 % 4 16 2 35 1 9 0 1
1 org kamereon service core view generic inds I ds ator = 93% = 79 % 5 25 4 76 L] 13 0 2
1 org kamereon service core.cr manager. = 92% == 62 % 20 50 12 101 0 19 0 3
1 org.kamereon service. core.viev.legacy = 9% 1 50 % 10 61 9 133 6 57 0 6
1 org kamereon service core service. cutor | | 89% 1 88 % 1 14 7 35 L] 10 0 4
1 org kamereon service core.view | — 88% == 63 % 28 7 33 219 9 51 0 6
1 org kamereon service. core.viev. generic.gmap = 7% = 58 % 10 18 2 31 0 5 0 1

And when you have understood it’s easy to set even with a bunch of flavor dimensions.

So the goal is to have a final report on your tests coverage for all your tests. Let’s do that.

13 Enabling Jacoco on your project

By default, you have Jacoco in your Android build system, you just have to enable it and you'll have
your first report each time you run tests.

Do to that, you have to enable it in 2 different places in your build.gradle.

13.1 Enable code coverage for instrumented tests
You activate it for the build you want (debug or release):

buildTypes {

release {
//your debug part
//add tests coverage using Jacoco
testCoveragekEnabled false

}

debug {
//your debug part
//add tests coverage using Jacoco
testCoveragekEnabled true

59

Doing that enable your tests reports for all you instrumented test for your Debug build type. As | only
need it for Debug, | just set it on the Debug build type.

13.2 Enable tests coverage for UnitTests
To enable your code coverage for unit tests add this gradle hook (in your build.gradle or in a separate
file called by your build.gradle)
//Enable the coverage report for unit test
android.testOptions {
unitTests.all {

jacoco {
includeNoLocationClasses = true

}

You did it, tests coverage is enable on the project.

13.3 What happened
Doing so, you have created in your project several gradle tasks that are here to generate your .ec files
(raw data of coverage report) for your instrumented tests.

You can find them in the category other.

Gradle projects - 1
|+ - |@ X £ m |4 B
4 crashlyticsUploadDistributionMycmsMockDebug
£ crashlyticsUploadDistributionMycmsProdDebug
4 crashlyticsUploadDistributionMycmsProdRelease
4 createCatbusMockDebugAndroidTestCoverageReport
i createCathusProdDebugindroid TestCoverageReport
& createMycmsMockDebugAndroidTestCoverageReport
i createMycmsProdDebugAndroidTestCoverageReport
£ deletelnferConfig
1k extractProguardFiles
¥ fabricGenerateResourcesCatbusMockDebug
¥ fabricGenerateResourcesCatbusProdDebug

SIPEID o,

4¥ fabricGenerateResourcesCatbusProdRelease

And the same tasks for your unit tests reports (category verification)

60

Gradle projects £ |
g + O e B

B L e e B

SIPEID o,

i
¥l

e

¥ validateSigningCatbusProdRelease

¥ validateSigningMycmsMockDebug

£ validateSigningMycmsMockDebugindroid Test
¥ validateSigningMycmsProdDebug

4 validateSigningMycmsProdDebugAndroidTest
¥ validateSigningMycmsProdRelease

o verification
& check
¥ checklicenses
£ connectedAndroidTest
£ connectedCatbusMockDebuglndroidTest
¥ connectedCatbusProdDebughndroidTest
¥ connectedCheck
& connectedMycmsMockDebughndroidTest
£ connectedMycmsProdDebuglndroid Test
i createCatbusMockDebugCoverageReport
4 createCatbusProdDebugCoverageReport
& createMycmsMockDebugCoverageReport

i createMycmsProdDebugCoverageReport

Now, each time you run your tests, those tasks are executed and jacoco will generate the raw file of
the coverage report for this set of tests in a specific format. Exec for unit tests and ec for
instrumented tests, you can find them in your build folder.

61

~ Packages [Scratches lﬁl Android | #

0 = | B

v B MyCMS 000Gt ACMS mycms-androidi My TS
I > .gradle
| > Jddea
v [Eapp

kL build
docs
generated

intermediates

4 Y ¥Y¥

jacoco
testMycmsMockDebuglnitTest.exec

testhMycrmsProdDebugUnitTest.exec

¥ outputs
> androidTest-results
[4 apk
v code-coverage
v connected
v flavors
L 4 MY CMSMOCK
Mexus 53X - 7.1.1-coverage.ec
MYCMSPROD

Mexus 53X - 7.1.1-coverage.ec

> logs

> mapping

14 Defining and creating your report

Then let’s create a specific gradle task, that will generate the report, this way, you can call it from

AndroidStudio or directly with the gradle console.
The algorithm of this task is:

e Run your tests and generate your exec and ec files

e Define which files you want to exclude from the analysis (auto generated code, code from
library, some of your classes that are tests classes, or pojo)

e Define where is the code to analyse; you need to give the location of the .class files (in
build/intermediates) and the package they belong in your source code (for exemple

src/main/java)

e Define which in which files are your raw coverage data generated by Jacoco (the .ec and

.exec files)

And that’s all. Crazy, | hunt this information in the 2 first google pages results of “jacoco android

gradle” or such a request.

Now we know what to do, let’s do it:

62

apply plugin: ‘jacoco’
/IYour task is task of type Jacoco
/land you have to run all your tests task and you create***CodeCoverage one
/lthose tasks are generated when you enable Jacoco (first chapter)
task jacocoTestReport(type: JacocoReport, dependsOn: [
/lif you have already run those tasks in your build, just comment them
'testMycmsMockDebugUnitTest’,
"'testMycmsProdDebugUnitTest',
‘createMycmsMockDebugCoverageReport',
‘createMycmsProdDebugCoverageReport’,
D{
/IDefine which type of report you want to generate
reports {
xml.enabled = true
html.enabled = true

/ldefine which classes to exclude

def fileFilter = [
"**IR.class’,
**/R$*.class’,
"**/BuildConfig.*",
**/Manifest*.*",
**[*$Viewlnjector™.*",
***$ViewBinder*.*",
**[*l_ambda*.*", // Jacoco can not handle several "$" in class name.
"**[*Module.**, // Modules for Dagger.
"**[*Dagger*.**, // Dagger auto-generated code.
[*MembersInjector*., // Dagger auto-generated code.
**[* Provide*Factory*.*",
**[* Factory.*', //Dagger auto-generated code
X fegEG* *! /I Anonymous classes generated by kotlin
/ladd libraries
‘android/**/* *',
‘com/**[* *
'Uk/**/*.*',
lof*x[* *"
/lremove what we don't test
‘androidTest/**/* **,
"test/**/* >,
"**[injector/**/* **,
/model//* *",
'**/mOCk/**/*.*',
fevent//* *",
xx \iewBinding**',
**[*EventType.*',
"**fx*Mocked'

/IDefine your source and your classes: we want to test the production code

def debugTree = fileTree(dir: ""${buildDir}/intermediates/classes/mycmsProd/debug", excludes: fileFilter)
def mainSrc = files([*'src/main/java’,''src/mycms/java’])

/IExplain to Jacoco where is your source code

sourceDirectories = files([mainSrc])

/[Explain to Jacoco where are you .class file

classDirectories = files([debugTree])

/IAs you want to gather all your tests reports, add the ec and exec you want to be took into

/laccount when generating the report

63

executionData = fileTree(dir: ""$buildDir"", includes: [
""jacoco/testMycmsMockDebugUnitTest.exec,
"'jacoco/testMycmsProdDebugUnitTest.exec™,
"‘outputs/code-coverage/connected/flavors/**/*coverage.ec'

D
}

15 References

https://medium.com/@rafael_toledo/setting-up-an-unified-coverage-report-in-android-with-jacoco-
robolectric-and-espresso-ffe239aaf3fa

and

https://medium.com/contentsquare-engineering-blog/make-or-break-with-gradle-dac2e858868d

64

Chapter 7: Build Organization

On this chapter, | want to focus on what | want, not what | can do. So let’s make our wishes list for
our build file.

Concerning organization of the builds, | want to:

e extract my sensitive information in a specific file excluded from Git (security)

e split my build.gradle file in more specific build files (uploading, ...)

e Define specific resources values that can be handled by my java code, my resources and the
manifest.

Concerning application’s builds, | want to:

e add a flavor mock and prod for tests environment
o build my apk in debug mode with a mock flavor for running instrumentation tests,
o build my apk in debug mode with a production flavor to test it on the team’s devices,
e build my apk in release mode, signed, proguarded, minified and resources shrank
e be able to run all those apk on the same device
e increment my versionCode automatically
e tune my lint options
e manage dex problems using an already multi-dex library in the project

Concerning flavors management, | want to:

e Define several flavors dimensions: Mocked (with prod and mock), TeamSpecific (Ux,
AlphaTests, ...), Brands (Ambre, CatBus, Cars...), others

e and do those builds for each of those flavors

e Share java code between dimensions (a good way to define default architecture behaviors
easily over writable)

e Do the same with resources

Concerning tests and validation, | want to:

e be able to run my tests and have reporting (lint reports, tests coverage, tests reports) in
specifics directories

e be able to drop it on Jenkins

e be able to include spoons to run parallel instrumentations tests with screen captures on the
devices/emulators

e be able to deploy a snap-shot of the project to my team with docs for check points (it means
create a directory with the apk, the release note, the lint and tests reports for team
validation...) and zip it

Concerning deployment, | want to:

e be able to generate JavaDoc,
e be able to deploy it on a Nexus (maven central private repository) with its sources, javadocs

Concerning Stores (GooglePlay), | want to:
e split apk depending on screen densities for a smooth delivery on googleplay

65

e Prepare a folder with all the needed files for the GooglePlay deployment

We won't explain all those dots, but you should be able to set them all when you have finished the

reading of those chapters.

When writing this article | rely a lot on:

https://developer.android.com/studio/build/gradle-tips.html#configure-project-wide-properties

16 Builds Organization

16.1 General notions on *.properties files
We need to be able to consider our build.gradle as a function that makes stuff and being able to feed
this function with parameters. So here comes the properties files.

The default properties file for your project is gradle.properties at the project root.

[MultiplicationBasile D:'Git\MyProjets\ Multiplication

3 .gradle

[.idea

[app

1 build

[gradle

E .gitignore

EI T_superman-312.png
[} bad.png

** build.gradle

[} CaptainDroid.png
EI Drhulk.png

Il gradle.properties

EI gradlew
E gradlew.bat

EI Hero_lcon.png

[} IrenDroid.png

I:ﬂ local. properties

[} medalll.png

[& MultiplicatienBasile.iml
& settings.gradle

EI SpiderDroid.png

[} SuperHero.jpg

EI winner-256.png

In this file, you will be able to define attributes, variables that will be visible in your build.gradle files.

The default content of this file looks like that:
Project-wide Gradle settings.

IDE (e.g. Android Studio) users:

#
Gradle settings configured through the IDE *will overridex*
#

any settings specified in this file.

For more details on how to configure your build environment visit

66

https://developer.android.com/studio/build/gradle-tips.html#configure-project-wide-properties

http://www.gradle.org/docs/current/userguide/build environment.html

Specifies the JVM arguments used for the daemon process.
The setting is particularly useful for tweaking memory settings.
org.gradle. jvmargs=-Xmx1536m

When configured, Gradle will run in incubating parallel mode.

This option should only be used with decoupled projects. More details, visit

#
http://www.gradle.org/docs/current/userguide/multi project builds.html#sec:decouple
d projects

org.gradle.parallel=true

16.2 Defining your own properties files
When you want to create a new properties file for our project, just create it and add it to the
build.gradle where you want to use it, like that:

// Creates a variable called keystorePropertiesFile, and initializes it to the
// keystore.properties file.

def keystorePropertiesFile = rootProject.file("keystore.properties")
// Initializes a new Properties() object called keystoreProperties.
def keystoreProperties = new Properties|()

// Loads the keystore.properties file into the keystoreProperties object.
keystoreProperties.load(new FileInputStream(keystorePropertiesFile))

(https://developer.android.com/studio/build/gradle-tips.html#configure-project-wide-properties)

To use it in your file, just use this syntax to access the values

keystoreProperties|['keyAlias']

16.3 Extracting password from gradle.properties file (Default)
You should use properties if:

e You have sensitive information (like id/password) in your build.gradle, you need to extract it
e You have configuration information (server urls, server deployment, specific directories)
e You have project information (dev name and role)

You should extract those information in specific properties files. You can exclude some files from you
versioning sources control (Git) to protect sensitive information or specific configurations.

So, in our project, let’s create some properties in the default gradle.properties file:

67

https://developer.android.com/studio/build/gradle-tips.html#configure-project-wide-properties
https://developer.android.com/studio/build/gradle-tips.html#configure-project-wide-properties

[2 MultiplicationBasile D\ Git\MyProjets\MultiplicationBasile
3 .gradle
[.idea
L app
3 build
[libs
[src
L 1 Jgitignore
(& app.iml
& build.gradle

Lt gradle.properties
EI keystore_sample.jks

B proguard-rules.pro

In the file gradle.properties, you just define your variables:
#Define your name

POM DEVELOPER ID=MSE A2EE

POM DEVELOPER NAME=Seguy Mathias

POM DEVELOPER MAIL=mathias.seguy@android2ee.com
POM DEVELOPER ROLE=Android Referent Expert
#Signing configurations
STORE_FILE=keystore_sample. jks
STORE_PASSWORD=android

KEY ALIAS=android

KEY PASSWORD=android

And you use them in your build.gradle:

android {

compileSdkVersion 25

buildToolsVersion "25.0.2"

defaultConfig {
applicationId "com.android2ee.basile.multiplication"
minSdkVersion 14
targetSdkVersion 25
versionCode 1
versionName "1.0"
testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"

}

signingConfigs {
release {
storeFile file (STORE_FILE)
storePassword STORE_ PASSWORD
keyAlias KEY ALIAS
keyPassword KEY PASSWORD

}

buildTypes {
release {
signingConfig signingConfigs.release
minifyEnabled false
shrinkResources false
useProguard false
proguardFiles getDefaultProguardFile ('proguard-android.txt'),
'proguard-rules.pro'

}

68

debug {
applicationIdSuffix '.debug'
versionNameSuffix '.debug'
}
}

You have externalized confidential information from the build file. If you want to keep them away
from your version control, you can.

16.4 Extracting password from my gradle_others.properties
So let’s say, we have extract the information but not in gradle.properties but in a file called
gradle_others.properties. How does it works?

It’s almost the same, but here, you have to load the file by yourself, like this:
The file ./app/gradles_others.properties

= MultiplicationBasile [\ Git'MyProjets\MultiplicationBasil
3 .gradle
JAdea
i app
build
libs
SFC
4 .gitignore
= app.iml
& build.gradle
* build_extras.gradle
il gradle.properties
| gradle_others.properties

=| keystore_sample,jhs

proguard-rules.pro
build
gradle

. -

Contains the following variables definition:

#Signing configurations
STORE FILE=Not set yet
STORE_PASSWORD=android
KEY ALIAS=android

KEY PASSWORD=android

#URL REPO FAKE DATA
UPLOAD_REPO=http://notset

UPLOAD_USER=JohnDOE
UPLOAD_PASS=0000

So in the build.gradle file of my app module, | just add the line of code to load this properties. | do
that in the android block, that way, it runs when the project is defined by gradle (for any tasks).

Note that | need to define my variables before trying to use them.

69

apply plugin: 'com.android.application'

android {
compileSdkVersion 25
buildToolsVersion "25.0.2"

/***

* Defining and Loading Properties
**/
//Define your own properties
project.ext {

uploadRepo = 'not_set'

uploadUser = 'not_ set'

uploadPass = 'not_set'

}

//Define a Properties object (you'll read)

def Properties props = new Properties()

//find the file defining those properties

def propFile = project.file('gradle_ others.properties')

//You can also use rootProject

//def propFileNotUsed = rootProject.file('./app/gradle others.properties"')

if (propFile.canRead()) {
//load the properties in your Properties object
props.load(new FileInputStream (propFile))

//You can define specific variables of the build directly
if (props!=null && props.containsKey ('STORE FILE') {
//You can directly set variables of the project
//here defining the debug signing config
android.signingConfigs.debug.storeFile = file(props['STORE FILE'])
} else {
println 'gradle others.properties found but entry missing'
android.buildTypes.debug.signingConfig = null
}

//0r you can set your own variables

if (props!=null && props.containsKey ('UPLOAD REPO')) {
uploadRepo=props ['UPLOAD REPO']
println 'gradle_others.properties found '+uploadRepo

}else{
println 'gradle others.properties UPLOAD REPO entry is missing'

}

}else {
println 'gradle_ others.properties not found'
android.buildTypes.debug.signingConfig = null
}

/***

* Signing
**/

defaultConfig {...}

/***

* Signing
**/

signingConfigs {
release {...}
debug {...}

}

Wait, what happens here? Ok, let’s do it step by step.

70

16.4.1 Define your variables
This bloc declare uploadRepo, uploadUser and uploadPass as variables of the project.

//Define your own properties
project.ext {

uploadRepo = 'not set'
uploadUser = 'not set'
uploadPass = 'not set'

16.4.2 Use your variable
They can be used anywhere after that, in your script or as variable of the build:

task printRepoVar () {
println uploadRepo
}

Or

signingConfigs {
debug {
storeFile file(uploadRepo)
storePassword STORE PASSWORD
keyAlias KEY ALIAS
keyPassword KEY PASSWORD

16.4.3 Load your properties file
The next step is to find the file and load it into a Properties object:

//Define a Properties object (you'll read)

def Properties props = new Properties()

//find the file defining those properties

def propFile = project.file('gradle others.properties')

//You can also use rootProject

//def propFileNotUsed = rootProject.file('./app/gradle others.properties"')

if (propFile.canRead()) {
//load the properties in your Properties object
props.load(new FileInputStream (propFile))

16.4.4 Initialize your variables
Then you use your properties object to set your variables:

Those of the build script itself:

if (props!=null

&& props.containsKey ('STORE FILE')

&& props.containsKey ('STORE PASSWORD')

&& props.containsKey ('KEY ALIAS'")

&& props.containsKey ('KEY PASSWORD'")) {
//You can directly set variables of the project
//here defining the debug signing config
android.signingConfigs.debug.storeFile = file(props['STORE FILE'])
android.signingConfigs.debug.storePassword = props['STORE PASSWORD']
android.signingConfigs.debug.keyAlias = props['KEY ALIAS']
android.signingConfigs.debug.keyPassword = props['KEY PASSWORD']

} else {
println 'gradle others.properties found but some entries are missing'
android.buildTypes.debug.signingConfig = null

71

Or your own:
//Or you can set your own variables
if (props!=null && props.containsKey ('UPLOAD REPO'")) {
uploadRepo=props['UPLOAD REPO']
println 'gradle others.properties found '+uploadRepo
}else(
println 'gradle others.properties found but UPLOAD REPO entry is missing'
}

16.5 Splitting the build.gradle file into several files to gain in readability
More we do in our build.gradle, more the file goes long, complex and finally achieve to be
unreadable.

To avoid this treat, we are going to split our build.gradle in several different files. Each of this file will
be responsible of a specific part of the whole build.

For example, does the code to load properties needs to be in build.gradle? No, not really, we will gain
in readability by extracting it.

Create your new file, here, | called it build_extras.gradle:

[2 MultiplicationBasile D:\Git\ My Projets\MultiplicationBasile
3 .gradle
7 .idea
L1 app
B3 build
1 libs
[sre
L 13 Jgitignore
[app.iml
& build.gradle
m| gradle.properties
[t gradle_others.properties
El keystore_samplejks
B proguard-rules.pro

-

Then | extract the code from build.gradle and copy paste it in the build_extras.gradle files. This code
defines the variables of the previous example and set them using the properties file.

My build_extras.gradle file looks like:

println 'Hello fomr gradle extras'
/***

* Loading Variables
**/

//Define your own properties
project.ext {

uploadRepo = 'not_set'
uploadUser = 'not_set'
uploadPass = 'not_set'

72

//Define a Properties object (you'll read)

def Properties props = new Properties()

//find the file defining those properties

def propFile = project.file('gradle others.properties')
}

Then, | just have to apply it in my build.gradle, in my android bloc

build.gradle:

android {
compileSdkVersion 25
buildToolsVersion "25.0.2"
defaultConfig {. . .}

/*******k**************************k**************************

* Signing
**/
signingConfigs {
release {. . .}
debug {. . .}
}

/***

* Defining and Loading Properties
**/

apply from: 'build extras.gradle'

And that’s it. This is the way we gonna avoid 10 thousands lines build.gradle file.

And that’s important.

16.6 Define variables for Java code and Manifest
So we have defined variables for our gradle’s build. What about define them, at this level, for some
critic information in our code? Or our resources? Our Manifest?

We can define variables in two types of object:

e BuildConfig
e ResValues which are your resources

If you define variables in those classes, they’ll appear as attributes for the classes:

e resValue "string", "hidden_string", "I love you my sweety"
Define in our resources, a string, with name hidden_string and value | love you sweety

And

e buildConfigField("boolean", "isallowed", "true")
Define in our BuildConfig object a Boolean called isallowed with a default value to true. You
can omit the parenthesis.

You can define a default value for all the variants and then overwrite it in your flavors or buildType
blocs. It’s a good practice to always define default values.

There is limitation on the type of primitive you can use. It works well with String, Boolean and Colors.
| didn’t find the way to define boolean or int in ResValues. | neither try with all the primitives’ types.

Let’s have a look at the code.

73

//define default value for your attibutes

defaultConfig {
buildConfigField ("boolean”", "isallowed", "true")
buildConfigField ("String", "isStringallowed", '\"quarante
trois\"")
buildConfigField ("int", "intAllowed", "3")
resValue "string", "hidden string", "I love you my sweety"
resValue "color", "color_ var", "#FFOOff"
resValue "bool", "isBoolAllowed", "true"

/***

* Build Type

**/

buildTypes {

release {
signingConfig signingConfigs.release
minifyEnabled false
shrinkResources false
useProguard false
buildConfigField("boolean", "isallowed", "false")
proguardFiles getDefaultProguardFile ('proguard-android.txt'),

'proguard-rules.pro'

}

debug {
applicationIdSuffix '.debug'
versionNameSuffix '.debug'
buildConfigField("boolean", "isallowed", "true'")
resValue "string", "hidden_ string", "I love you debug"

}

/***

* Managing flavors
**/

//Give a name to your dimension
flavorDimensions "enfants", "operator"

//define your flavors (as one flavor has a dimension they must all have one)
productFlavors {
basile {
dimension "enfants"
//resValue "boolean", "basile dimension", "true" -> not allowed

//resValue "int", "int_allowed", "1" -> not allowed
buildConfigField("boolean", "isallowed", "true'")
resValue "string", "hidden_string", "I love you my basilou"
resValue "color", "int allowed", "#FFOOff"

}

lila {

dimension "enfants"
applicationId "com.android2ee.lila.multiplication"

buildConfigField("boolean", "isallowed", "true'")
resValue "string", "hidden_string", "I love you my Lila"
resValue "color", "int allowed", "#FFOOff"

}
multiplication ({
dimension "operator"
}
addition {
dimension "operator"
}
}

And | can use them like that:

74

public class MyApplication extends Application {
@Override
public void onCreate() {
super.onCreate () ;
Log.e("MyAppInitializer", "Gradle Variable resValues.hidden string
="+R.string.hidden string) ;

Log.e("MyAppInitializer", "Gradle Variable
resValues.isBoolAllowed="+R.bool.isBoolAllowed) ;

Log.e("MyAppInitializer", "Gradle Variable
resValues.color_var="+R.color.color_ var);

Log.e("MyAppInitializer", "Gradle Variable
BuildConfig.isallowed="+BuildConfig.isallowed) ;

Log.e("MyAppInitializer", "Gradle Variable
BuildConfig.isStringallowed="+BuildConfig.isStringallowed) ;

Log.e("MyAppInitializer", "Gradle Variable
BuildConfig.intAllowed="+BuildConfig.intAllowed) ;

}

Returns :

E/MyApplnitializer: Gradle Variable resValues.hidden_string =2131099696
E/MyApplnitializer: Gradle Variable resValues.isBoolAllowed=2131296261
E/MyApplnitializer: Gradle Variable resValues.color_var=2131361814
E/MyApplnitializer: Gradle Variable BuildConfig.isallowed=true
E/MyApplnitializer: Gradle Variable BuildConfig.isStringallowed=quarante trois

E/MyApplnitializer: Gradle Variable BuildConfig.intAllowed=3

It also works for the Manifest when you have defined them as ResValues (BuildConfig is not
accessible):

-—>

<meta-data
android:name="com.google.android.geo.API_KEY"
android:value="@string/google maps_key" />

<meta-data
android:name="com.google.android.gms.version"
android:value="(@integer/google play services_version"/>

</application>

16.7 Custom my gradle memory to run fast
If you have a good engine under the keyboard, you can tune gradle to be more efficient. You have to
add in the gradle.properties file the following lines:

75

#Enable daemon
org.gradle.daemon=true

Specifies the JVM arguments used for the daemon process.

The setting is particularly useful for tweaking memory settings.
Try and findout the best heap size for your project build.
org.gradle. jvmargs=-Xmx2048m -XX:MaxPermSize=512m -

XX :+HeapDumpOnOutOfMemoryError -Dfile.encoding=UTF-8

When configured, Gradle will run in incubating parallel mode.

This option should only be used with decoupled projects. More details,
visit

#
http://www.gradle.org/docs/current/userguide/multi project builds.html#sec:
decoupled projects

Modularise your project and enable parallel build
org.gradle.parallel=true

Enable configure on demand.
avoid building part of the project when it's not necessary
org.gradle.configureondemand=true

You can increase you’re your heap for gradle, just change the org.gradle.jvmargs to 3072 for example
or more if you are lucky.

17 Application’s builds

17.1 Mock and Production flavors for tests environments

When | build an application, one of my concern is testing. So | want to be able to test my application.
It means if | want to test a piece of my application, | need to fix inputs of the element to tests its
outputs.

For example, if | want to test one of my business service, | will do something like that:

A tE
o4

é’
E

2 DAOD

A

DAO.

If we look at that diagram, we clearly see that for testing the service, | need to have mocked
communication and mock DAO, because it’s my inputs. And the service itself is the real service. As |
want to test all elements of my application, that means we have in the test apk all the real elements
of the application AND all the needed mocked elements (View, Services, Com, DAO...).

76

How can | build such an application? Do | need to embed in my production application all those
mocked classes just for testing? Of course not.

So | need to have a specific flavor, let’s call it test_env (for test environment context) with two
values. The first one mocked which contains all my mocked elements and all my application’s
elements. The second one, which is production, contains only the real classes without the mocked
elements.

Let’s do that:

/***

* Managing flavors
7‘:7':7‘:7‘:7‘:7':7‘:**********************//

productFlavors {
prod {
dimension "test env"
versionNameSuffix "-prod"
applicationIdSuffix ".prod"
}

mock {
dimension "test env"
versionNameSuffix "-mock"
testProguardFile ('proguard-rules-test.pro')
applicationIdSuffix " .mock"

}
}
As | want to install those both applications on the same device (I want to avoid package conflicts and

be able to run each application variant), | have changed the application Id. For me to have a good
description in my device of the applications, | have changed its version name.

In my application | have centralized the managements of my services, dao, com through managers.
For example, | have the ServiceManager and in my application, | access services through it, like
ServiceManager.getDataService(). The same for DaoManager, ComManager... If | have implemented
the ServiceManager in the flavors mock and production the following way. In mock the services
return will be mock services, in production, returned services will be the real ones. If | use interfaces
for my services, | can use them in my application and use the **Manager to retrieve the real class
depending on this flavor context. It’s based on the interface-factory pattern.

So | just have to inject the right ServiceManager (Mock or Prod) depending on the flavor. To do that, |
prefer using the injector pattern:

77

1 mock
1 java
[org
1 kamereon
[service
[core
[com
1 common
[& RetrofitBuilderMocked.java
Ei: ServerManagerMocked.java
[cross
7 injector
[& Serverlnjector.java
Ei: Servicelnjectorjava
[service
[manager
[& ServiceManagerMocked.java
[&: LocationServiceMocked,java

res
3 myems
3 myemsMock
3 myemsProd
3 prod
[java
EJ org
[E1 kamereon
7 service
[core
EJ com
] manager
C 6 ServerManager
EJ cross
[injector
C % Serverlnjector
C 6 Servicelnjector
[service
[manager

C % ServiceManager

o [P Y I 1 [

17.1.1 Debug mode with mock flavor for the instrumentation tests
17.1.2 Debug mode with prod flavor for the team’s devices (to tests)

17.2 Deliver the project for weekly delivery to the team and stakeholders
The goals here is to deliver your work to your stakeholders automatically. To do that we will create a
specific gradle task to make the job and use Jenkins to run this task weekly.

78

But what do | want to do for this release?

| want to deliver the real product in its most stable state. This means, we want to deliver the master
branch in its production flavor.

| also want to deliver the real product in its current state. This means, we want to deliver the dev
branch in its production flavor.

By the way, it happens that we want to test the application, using a tests cases plan. This plan needs
fixed input to check if the outputs are ok. In a way, instead of running automatically the tests using
instrumentation tests, a human will do that.

So | also want to deliver the product in its most stable state and in its testable state (meaning | want
to use the mock flavor that insure the inputs are always the same).This means, we want to deliver
the master branch in its mock flavor.

So | also want to deliver the current product in its testable state (meaning | want to use the mock
flavor that insure the inputs are always the same).This means, we want to deliver the dev branch in
its mock flavor.

To sum up, we want:

For the master branch: prod_debug, mock_debug
For the dev branch: prod_debug,mock_debug
Then we also want to add reports to this delivery:

e Testsreports

e Lint reports

e Analysis tools reports
e Splash screens

As the project evolves, we will also include the CatBus project in the delivery as a demonstration of
the brand customization of the application.

And as we want you can install all those apk on the same device (your devices) they will all have a
different Applicationld, Application name and a launcher icon (if we don’t forget the icon).

And this wil belong to the next chapter.

79

Chapter IX: Getting real

The goal of this chapter is to drive you through a real example of implementation and a step by step
explanation.

So you have read all the previous chapters, you have assimilate the notions, now let’s start use them.

We presume in this chapter that you have already define your build.gradle and your project compile.
We are beyond that point in this chapter; we are optimizing and enhancing it. We use a project with
two dimensions of flavor (because it happens). We want to release automatically 2 applications with
their reports, their tests ran, the upload to the maven central (private nexus in our case) and
deployment.

18 Organize your Gradle files as your code

In you project, start by creating a “gradle_scripts” folder (or a “gradle” folder as you want, you are
the one responsible for the naming, nobody cares except you and your team).

And get used to create your Gradle scripts in this folder, with sub folders hierarchy. Depending on
your project, you will we quickly see the number of Gradle files increase.

= MultiplicationBasile D Git\IMyProjets\ Multiplicatic
.gradle
JAdea
[T app
build
properties
Jil @ccounts_properties.properties
toolsReporter
findbugs
O findbugs.gradle
*} builds_hooks.gradle

load_accounts.gradle

o

=

release.gradle

o

tools_reporter.gradle

=

var_definition.gradle
libs
src
L 1 Jgitignore
m 2pp.iml
(_+ build.gradle

keystore_samplejks

= proguard-rules.pro

So organize your files, use sub-folders and split by responsibilities. You should only let at the app sub-
level the files: gradle.properties and build.gradle.

80

Once you have done that, let’s see what to put in our gradle files.

19 Extract your build variables and constants

As usual in your build.gradle you define your “project to build the project” receipt. You should start
by defining and extracting in a specific file (mine is called var_definition.gradle) all the constants and
variables that you want to use in your project.

So you first line should be to define if you build a library or an application. And the second line should
be to define your variables:

apply plugin: ‘com.android.application’

/**

* QOur variables definition for the build script
*/
apply from: ‘gradle/var_definition.gradle’

Where you are applying the gradle file that define your variable like this:

The gradle/var_definition.gradle file is the following:

B R R R e S R S S S R R R S R R R R R R S S S R R R R e e

* Gradle definition file of our dynamic variables

**/

println ‘in the var_defintion’

/
* Then define you attibutes/variables

* You need to define that way for others file to know them

* QOthers gradle file can not call the method (or I didn't find yet)

project.ext{

versionName = "'1.0.0"

compileSdk = 26

minSdk = 14

targetSdk = 26

/[Can not decrease

versionCode = 1

/IGradle groupd name (for your own tasks)
myGradleGroup=""Multiplication Basile tasks

useSupportLibVectorDrawable = true

/lbuild var

def_time_format=getDateTime()
def_branche_name=branch()
def_commit_number=commitNumber()
def_current_apk_name=apkCurrentSuffix()
def_apk_name_wrelease=apkWReleaseSuffix()

/Inatif tools

buildToolsVersion = *"'26.0.1"
supportLibVersion = "26.1.0"
supportAnnotationVersion = ""'23.1.1"

[Inatif
androidTestVersion = ""1.0.0"

81

junitVersion = "'4.12"
googlePlayServices = ""11.0.1"
androidGoogleMapUtil = **0.5"
constraintLayout = "'1.0.2"
supprtMultidex = ""1.0.1"

/Inatural libs

sugarVersion = "'1.4"
eventbusVersion = "'3.0.0"
//debug tools

leakcanaryVersion = ""1.5.1"
crashlyticsVersion = "'2.6.8@aar™

/[facebook analyse tools
fbStetho = "'1.5.0"

/ltests

mokitoVersion = "'2.8.47"
espressoVersion = "'3.0.0""
jsonVersion = "'20160810""

/landroid architecture components
archiComponentVersion = "'1.0.0-beta2"

}

Mainly we define in this file:

e The version of the SDK to use

e Variables for signing configurations

e Versions of the library we use

e Some variables used to create the file name when releasing the application.

We start our gradle.build by this definition because those variables are used in all the rest of the
scripts. So if you don’t define at the beginning, they are not know until you declare them. It’s a good
practice to define your variables at the beginning and to define them all, at the same place at the
same moment.

Then we use those variables in our main gradle build script (or anywhere else):

android {

compileSdkVersion project.compileSdk

buildToolsVersion project.buildToolsVersion

defaultConfig {
applicationld "'com.android2ee.basile.multiplication"
minSdkVersion project.minSdk
targetSdkVersion project.targetSdk
versionCode project.versionCode
versionName project.versionName
testInstrumentationRunner ""android.support.test.runner.AndroidJUnitRunner"
vectorDrawables.useSupportLibrary = project.useSupportLibVectorDrawable

20 Load your external properties files

Sometimes some critical information have to be removed from the project and you extract themin a
specific file (out of git watch). Then you want to load the value from this file into your gradle.

The best way is to read your properties file and doing this, to create your variables.

82

For the example we define our JavaKeyStore and the key to use for signing the release and the debug
apk. We use the same key (not the goal to show how to sign apk):

This is the properties file used, called accounts_properties.properties:

#Signing configurations
JKSFile=keystore_sample.jks
JKSPassword=android
JKSKeyAlias=android
JKSKeyPassword=android

Then we want to load those properties and to use them to define variables that will be available in
our Gradle file (or our code, as we want):

Then | create a file that will read this properties file and create the associated variables in the
gradle’s project object (project.myvar ou project.ext.myvar).

Extract of the file load_accounts.gradle:

def Properties props = new Properties()

/[find the file defining those properties

def propFile = project.file("./gradle/properties/accounts_properties.properties’)
/[You can also use rootProject

/ldef propFileNotUsed = rootProject.file('./app/gradle_others.properties’)

/ldo a log (in case), it will be displayed every time you avluate the gradle task graph
println ""The propreties file should be ${propFile}"

if (propFile.canRead()){
/lload the properties in your Properties object
props.load(new FilelnputStream(propFile))

/IYou can define specific variables of the build directly
if (props!=null
&& props.containsKey("JKSFile")) {
/INow the properties are loaded in your props's set of variables, enjoy an reuse them
/Inere defining the debug signing config
/Ihttps://docs.gradle.org/current/dsl/org.gradle.api.plugins.ExtraPropertiesExtension.html
/ITo set an already existing value (but useless)
project.ext.set("" JKSFile" , file(props['JKSFile']))
Nothing complex here, we define a properties object, locate our properties file, load it in the

properties object and then use the properties object to define our own gradle’s variables.

To define gradle variables, it’s just easy and you have several syntaxes. You can use the way to code
you like.

/[To create or set a value

project.ext.set("" JKSFile" , file(props['JKSFile']))

/[This syntax works

project.ext.set(""'JKSPassword" , props['JKSPassword'])
/[This syntax works too

project.ext.JKSKeyAlias= props['JKSKeyAlias']

/[This syntax works also
project.ext.JKSKeyPassword=props['JKSKeyPassword']

They all work.

To use those elements, it’s also straight forward:

println ""You have = project.ext.JKSPassword=${project.ext.JKSPassword}
println ""You have = project. JKSPassword=${project.JKSPassword}"

83

And in reality, you use them in your signing block of your main gradle build file for the module:

Extract of your build.gradle file:

/
* Defining and Loading Properties

apply from: ‘gradle/load_accounts.gradle’
/

* Signing

signingConfigs {
debug {
storeFile project.ext.JKSFile
storePassword project.ext.JKSPassword
keyAlias project.ext. JKSKeyAlias
keyPassword project.ext. JKSKeyPassword
}
release {
storeFile project.ext.JKSFile
storePassword project.ext.JKSPassword
keyAlias project.ext. JKSKeyAlias
keyPassword project.ext. JKSKeyPassword
}
}

release {
signingConfig signingConfigs.release

}
debug {

signingConfig signingConfigs.debug
}

21 Extract your hooks

From the same point of view, extract your hooks. A hook is when during the build of the gradle
graph, you make an action, like ignoring specific build variants:

android.variantFilter { variant ->
if (variant.getFlavors().get(0).name.equals('basile’)
&& variant.getFlavors().get(1).name.equals(‘addition’)) {
variant.setlgnore(true);

}

Mainly in our hook, we:

e Ignore specific build variants
e Rename the output apk’s name
e Add tests options or ignoreFailure flags

Like this:

/
* Apply the build hooks here
**/

/**

* Rename all the apk to obtain the following format:

84

* app-mycms_0.0.1_201704100_0101.apk
*/
android.variantFilter { variant ->
variant.outputs.each { output ->
output.outputFile = new File(
output.outputFile.parent,
output.outputFile.name.replace(*".apk', def_current_apk_name + "".apk™))

}
}
/**
* Adadpt the variants existence depending on the build you are doing ‘aar or apk)
*You don't need the same variants
*/
//Remove the BasileAddition and LilaMultiplication flavor
android.variantFilter { variant ->
if (variant.getFlavors().get(0).name.equals('basile")
&& variant.getFlavors().get(1).name.equals(‘addition’)) {
variant.setlgnore(true);
}else {
println **Var of the project"
println variant.getFlavors().get(0).name
println file(STORE_FILE)
println uploadRepo
println **-----m-emmmemeeee
}
if (variant.getFlavors().get(0).name.equals(‘lila’)
&& variant.getFlavors().get(1).name.equals("‘multiplication)) {
variant.setlgnore(true);
}
}

/I Continue gradle tasks even if test fails
tasks.withType(VerificationTask) { task ->
task.ignoreFailures = true

}

//[Enable the coverage report for unit test
android.testOptions {
unitTests.all {
jacoco {
includeNoLocationClasses = true
}
}
}

android.testOptions {
unitTests.returnDefaultValues = true

}

To call this script, you just have to apply it from your main build.gradle file. But this time, as the
hooks concern the end of the process. You need to wait your flavors are defined (the objects you
work on), so you need to call it after this declaration:

/
* Managing flavors

85

//Give a name to your dimension

flavorDimensions ""enfants™, ""operator"

/ldefine your flavors (as one flavor has a dimension they must all have one)
productFlavors {//blabla flavors description

}

/

* Apply the build hooks here

apply from: ‘gradle/builds_hooks.gradle'

22 Building, testing and Analyzing Script

To create a release script you will need to aggregate several tasks:

e Build the project

e Run the tests (Unit and Android)

e Run the analyzer and gather the reports

e Move the deliverables to the delivery folder

e Upload the application (or archive) to your Nexus

e Deploy the application on GooglePlay (but not explain in this article)

Let’s create those elements steps by steps. We want first a task that build and check the result of the
build.

22.1 BuildAndCheckProject task
This task is simple, it’s an entry point and you just want it to run the task build and check. It looks like
something like this:

/**
* Run the build, the tests and the analyzers tools reports
*/
task buildAndCheckProject(dependsOn: [
‘fullBuild*,//ok
‘runReportersTools'

DA

group = project.ext.myGradleGroup
description =""Run full build and then the full check."
doFirst {

println 'Starting the build"

}
doLast {

println "Full complete check of MyCms application is done'

}
}

Yep, we just say what we depend on two tasks, fullBuild and runReportersTools. You need to
synchronize those two tasks, because you need to run your checking AFTER the build is done and the
tests are passed so at the end of the file you just explain that to your script:

runReportersTools.mustRunAfter ":app:fullBuild"

Those tasks are not defined yet, this is the goal of the next chapters.

86

22.2 fullBuild task
The task fullBuild is dedicated to create the applications and run the tests on it. In the example
project there is no smart tests yet, perhaps one day they will come.

So full build, in a way does nothing, it just depends on 3 tasks:

e ":app:build’,
e ':app:connectedAndroidTest’,
e ':app:test’

Those tasks are native tasks of your project.

So all you have to do is:

/**
* Build then Run AndroidTests and UnitTests.
*/
task fullBuild(dependsOn: [':app:build’,":app:connectedAndroid Test',":app:test']) {
group = project.ext.myGradleGroup
description =""Build then Run AndroidTests and UnitTests."
doLast {
printin ‘Done’
}
}

22.3 runReporters task
This task is launching several tasks; one task for a specific tool. The several tools we want to use:

e FindBugs
e Jacoco

e PMD

e Lint

e Unit tests results
e Android tests results
e Javadocs

In fact tests results are already created by the FullBuild, you just want to move them.

/**
* Generate the Analysers tools reports on your projects
*/
task runReportersTools(dependsOn: [
‘findbugs',//ok
'JacocoTestReport',//ok
'pmd",//ok
‘androidJavadocs'//ok
/linfer is missing (troubles on windows)
/llint is done by the native android build script
DA
group = project.ext.myGradleGroup
description ="'Generate the Tools anaylzers reports."
doFirst {
println *LaunchingCheck’
}
doLast {
/lcopy your report folder to the release folder
moveTheReportToReleaseFolder
println "check done'

87

¥
¥

In fact we are going to inject libraries in our gradle script. All those libraries scripts will be related
with reporters. It's the moment to create a folder:

[app

build

properties

o] accounts_properties.properties

toolsReporter
» findbugs

findbugs.gradle

(& jacoco.gradle
E‘ builds_hooks.gradle
'E: load_accounts.gradle
(= release.gradle
Etn:n:nls_repn:nrter.gradle
(& var_definition.gradle

In the toolsReporter folder we gather all those scripts.

22.3.1 moveTheReportToReleaseFolder task
It's just a task that copy paste content from one folder to another one. This type of task is current in
gradle scripts.

/***

* Move your report to your release folders

**/

//Move the generated files to the delivery
task moveTheReportToReleaseFolder(type: Copy,
dependsOn: ['fullBuild’, ‘cleanReleaseReportDirectory]) {
group = project.ext.myGradleGroup
description ="*Move the build/report folder into the weekly_release."
println *“Task moveTheReportsToReleaseFolder’
from *build/reports/*
into 'weekly release/' + def _branche_name + ‘/reports/*
include("**/*")
exclude("**/*-release-*")
doLast {
printin ‘moveTheFileToReleaseFolder over'
}

}

/IRemove directory where release test reports will be copied into
task cleanReleaseReportDirectory(type: Delete) {
group = project.ext.myGradleGroup
description ="'Clean the directory of the report in the weekly_release."
doLast {
delete ‘weekly release/* + def_branche_name + '/reports/’

¥
¥

88

22.4 runReporters:FindBug task
We start by include FindBugs.

First, we need to retrieve the gradle plugin itself. You need to add those repository to your artefact
repository list, in your main build.gradle (the one of the project, not the one of your module):

buildscript {
repositories {
mavenCentral()
jeenter()
}
dependencies {
/I NOTE: Do not place your application dependencies here; they belong
/I in the individual module build.gradle files
}
}

allprojects {
repositories {
jcenter()
mavenCentral()
}
}

Second, you need to create your gradle script file to run the library, let’s call it findbugs.gradle under
toolsReporter folder:

apply plugin: *findbugs'

/**

* Define your directory

*/

def reportsDir = "'${project.buildDir}/reports"

task findbugs(type: FindBugs, dependsOn: [
":app:assembleBasileMultiplicationDebug’,
:app:assembleLilaAdditionDebug’,
":app:cleanPreviousFindbugsReports',//ok
D{
group = project.ext.myGradleGroup
description =""Generate the findbugs report.*
ignoreFailures = true
reportLevel = "low"
effort = ""max""
excludeFilter = new File(*'gradle/toolsReporter/findbugs/findbugs-filter.xml"")
//Define exactly where are the class in your Build folder to analyze
classes = files(""${buildDir}/intermediates/classes/basileMultiplication,
"${buildDir}/intermediates/classes/lilaAddition"")

//Where are your sources:

source ‘'src/main/java’, ‘src/basile/java’, 'src/lila/java’, 'src/addition/java’, ‘src/multiplication/java’
include "**/* java’

exclude "**/gen/**"

reports {
xml.enabled = false
html.enabled = true
xml {

89

destination new File(**$reportsDir/findbugs/findbugs.xml**)

}
html {

destination new File("*$reportsDir/findbugs/findbugs.html™)

}
}

classpath = files()
}

First notice we start by applying the plugin findbugs.
Then we define a task called findBugs:

task findbugs(type: FindBugs, dependsOn: [
":app:assembleBasileMultiplicationDebug’,
;app:assembleLilaAdditionDebug’,
":app:cleanPreviousFindbugsReports',//ok

DA
This task is a FindBugs type task (the one defined in the plugin finbugs we imported) and depends on

assemble.
The FindBugs task needs several parameters to work fine:

e Which file to exclude from the analysis

e Where is the classes (your bytecode to analyze, in your build folder)
e Where is your source class (your code in fact)

e What is the pattern of the file to include, the one to exclude

e What type of report you want and where

e Which is the min level you want to use to detect bugs

e Which is the effort to make

e [f you fail when findbugs detects errors

And the file above is just the syntax to use to provide those parameters to the task.

22.4.1 The findbugs-filter.xml file
This is a configuration file for findBugs, (documentation can be found here:
http://findbugs.sourceforge.net/manual/filter.html). It is localized under toolsReporter/findbugs.

<?xml version=""1.0" encoding="UTF-8"?>
<FindBugsFilter>
<I-- http://stackoverflow.com/questions/7568579/eclipsefindbugs-exclude-filter-files-doesnt-work -->
<Match>
<Class name=""~*\.R\$.*"" />
</Match>
<Match>
<Class name=""~*\Manifest\$.*"" />
</Match>
<I-- All bugs in test classes, except for JUnit-specific bugs -->
<Match>
<Class name=""~**Test" />
<Not>
<Bug code=""1JU" />
</Not>
</Match>

90

http://findbugs.sourceforge.net/manual/filter.html

</FindBugsFilter>

22.5 runReporters:Jacoco task
Jacoco is a test coverage tool.

First, we need to retrieve the gradle plugin itself. You need to add those repository to your artefact
repository list, in your main build.gradle (the one of the project, not the one of your module):

buildscript {
repositories {
mavenCentral()
jcenter()
}
dependencies {
/I NOTE: Do not place your application dependencies here; they belong
// in the individual module build.gradle files
classpath ‘com.android.tools.build:gradle:3.0.0-beta2"
/IGradle check tasks : Jacoco
classpath ‘org.jacoco:org.jacoco.core:0.7.7.201606060606"
}
}

Second step, disable your default test coverage for your build gradle
Extract from build.gradle

buildTypes {

release {
signingConfig signingConfigs.release
minifyEnabled false
shrinkResources false
useProguard false
proguardFiles getDefaultProguardFile('proguard-android.txt’), ‘proguard-rules.pro’
/ladd tests coverage using Jacoco
testCoverageEnabled false

}

debug {
signingConfig signingConfigs.debug
applicationldSuffix *.debug’
versionNameSuffix '.debug’
buildConfigField(*'boolean™, "'isallowed™, "true")
resValue "'string", ""hidden_string", "'l love debug"
//add tests coverage using Jacoco
testCoverageEnabled false

}

}

Third, you need to create your gradle script file to run the library, let’s call it jacoco.gradle under
toolsReporter folder:

91

¥ properties
o] accounts_properties.properties
¥ toolsReporter
v findbugs

s findbugs-filter.xml
(&) findbugs.gradle

jacoco.gradle

The task itself follows the same principles as the ones for findBugs, you apply the plugin, your task is
of a specific type and you give the parameters to the “parent” task.

It looks like something like that:

apply plugin: ‘jacoco’

* % *

* Create Jacoco Report for each application you release

~

* o /
/**
* Generate the JaCoco report for Basile Apk
*/

task jacocoTestReportBasile(type: JacocoReport, dependsOn: [

/lyou depend on nothing because it's called by gWR...but

/1if you want to just generate your reports from scratch uncomment those lines
1 ":app:assembleBasileMultiplicationDebug’,

DA

reports {
xml.enabled = true
html.enabled = true
xml {
destination new File(*'$reportsDir/jacocoBasile/jacocoReportBasile.xml™)
}
html {
destination new File("*$reportsDir/jacocoBasile/jacocoReportBasile.html™)
}
}

/IDefine exactly where are the class in your Build folder to analyze
def debugTreeBasile = fileTree(dir: ""${buildDir}/intermediates/classes/basileMultiplication/release’",
excludes: fileFilter)
def mainSrc = files([*'src/main/java’,
"*src/basile/java™,
"'src/addition/java",
""src/multiplication/java’'])

//Where are your sources:

sourceDirectories = files([mainSrc])

classDirectories = files([debugTreeBasile])

/IAs you want to gather all your tests reports, add the ec and exec you want to be took into

/laccount when generating the report

executionData = fileTree(dir: ""$buildDir"", includes: [
"'jacoco/testBasileMultiplicationDebugUnitTest.exec™,
"'jacoco/testBasileMultiplicationReleaseUnitTest.exec",
""outputs/code-coverage/connected/flavors/**/*coverage.ec"

92

D

So mainly, for a JacocoReport task you need to provide the following parameters:

e Which and where you want your reports

e Where is the bytecode you want to analyze with the file name patterns you want to exclude
from your analysis

e Where is your source code

e And only tricky part, where are your execution data

So the only point is the execution data, right ?

executionData = fileTree(dir: ""$buildDir", includes: [
"'jacoco/testBasileMultiplicationDebugUnitTest.exec™,
"'jacoco/testBasileMultiplicationReleaseUnitTest.exec",
""outputs/code-coverage/connected/flavors/**/*coverage.ec"

D

So, you have to know that when we are running our test and analyze them, jacoco generates files
that are which and how tests have been ran on your code. When you parametrize a Jacoco task, you
need to provide the file you want to analyze. Mainly, for Android Tests, they are generated under
jacoco folder (in your build folder) with the exec extension. For Unit Tests, you have them under
outputs/code-coverage/connected/flavors with the extension ec. Find the file you are interested
with and use them for your analysis.

This is the way to gather several type of tests into the same code coverage report using Jacoco. Here
we use the tests from AndroidTest and unit tests to create the final code coverage report including
all those tests. This is an important point.

22.5.1 Jacoco with several flavors and product

If you deliver several application or archives with one project, because you play with flavors, you will
want to have a speicifc report for each apk (or aar). To do that you need to create a specific task by
apk and gather them like this:

/
* Main task

task jacocoTestReport(dependsOn: [
:app:jacocoTestReportBasile',
:app:jacocoTestReportLila’,

D

/***
* Create Jacoco Report for each application you release
**/
/**
* Generate the JaCoco report for Basile Apk
*/
task jacocoTestReportBasile(type: JacocoReport, dependsOn: [
/lyou depend on nothing because it's called by gWR...but
/[if you want to just generate your reports from scratch uncomment those lines
1 ":app:assembleBasileMultiplicationDebug’,

DA

reports {
xml.enabled = true

93

html.enabled = true
xml {
destination new File(*'$reportsDir/jacocoBasile/jacocoReportBasile.xml™)
}
html {
destination new File(""$reportsDir/jacocoBasile/jacocoReportBasile.html™)
}
}

//Define exactly where are the class in your Build folder to analyze
def debugTreeBasile = fileTree(dir: ""${buildDir}/intermediates/classes/basileMultiplication/release™,
excludes: fileFilter)
def mainSrc = files([*'src/main/java',
"'src/basile/java™,
""src/addition/java’,
""src/multiplication/java’])

//Where are your sources:

sourceDirectories = files([mainSrc])

classDirectories = files([debugTreeBasile])

/IAs you want to gather all your tests reports, add the ec and exec you want to be took into

/laccount when generating the report

executionData = fileTree(dir: ""$buildDir*, includes: [
"'jacoco/testBasileMultiplicationDebugUnitTest.exec™,
"'jacoco/testBasileMultiplicationReleaseUnitTest.exec™,
"‘outputs/code-coverage/connected/flavors/**/*coverage.ec™

D
¥

/**
* Generate the JaCoco report for Lila Apk
*/
task jacocoTestReportLila(type: JacocoReport, dependsOn: [
/lyou depend on nothing because it's called by gWR...but
/lif you want to just generate your reports from scratch uncomment those lines
Il ":app:assembleLilaAdditionDebug’,

DA

reports {
xml.enabled = true
html.enabled = true
xml {
destination new File("'$reportsDir/jacocoL ila/jacocoReportLila.xml™)
}
html {
destination new File("'$reportsDir/jacocoL.ila/jacocoReportLila.htmi™)
}
}

/IDefine exactly where are the class in your Build folder to analyze
def debugTreeLila = fileTree(dir: ""${buildDir}/intermediates/classes/lilaAddition/release",
excludes: fileFilter)
def mainSrc = files([*'src/main/java',
"src/lila/java™,
"'src/addition/java",
"'src/multiplication/java’])

//Where are your sources:

94

sourceDirectories = files([mainSrc])

classDirectories = files([debugTreeL.ila])

/IAs you want to gather all your tests reports, add the ec and exec you want to be took into

/laccount when generating the report

executionData = fileTree(dir: ""$buildDir", includes: [
"'jacoco/testLilaAdditionDebugUnitTest.exec™,
"'jacoco/testLilaAdditionEleaseUnitTest.exec",
""outputs/code-coverage/connected/flavors/**/*coverage.ec™

D
¥

You have your entry task that launch, for each application, the associated Jacoco task, with its
specific parameters.

22.6 runReporters: JavaDoc task
As usual for those tasks, in your tools_reporter.gradle file, you apply your gradle file containing your
Javadoc task, like this

apply from: ‘gradle/toolsReporter/javadoc.gradle’

/***

* Your Tasks for building and checking

/

/**
* Generate the Analysers tools reports on your projects
*/
task runReportersTools(dependsOn: [
‘findbugs®,//ok
‘jacocoTestReport',//ok
'generateProjectJavadocs'//ok even if the tasks fails, javadoc are generated
//but if not declared no javadoc generated

| spend some times trying to make this task running without problem, but | failed. All I can do is
generating the javadocs but the task failed with errors. Most of the time it doesn’t have the
reference to outside classes. By the way, so it failed, but it does enough.

So then the file Javadoc.gradle, is like usual, in a way:

/***

* Creating the Javadocs
* https://docs.gradle.org/current/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
/

task generateProjectJavadocs(type: Javadoc) {
group = project.ext.myGradleGroup
description ="'Generate the JavaDoc of the project.”
Ilbecause it will fail but generate your JavaDoc (probability of failure 80%, javadoc generation 100% sure)
failOnError false
title = "*Javadoc of the Project Multiplication®
source 'src/main/java’, ‘src/basile/java’, ‘src/lila/java’, 'src/addition/java’, ‘src/multiplication/java’
classpath = files(project.android.getBootClasspath())
destinationDir = file(""${buildDir}/reports/javadoc/*")

exclude "**/BuildConfig.java’
exclude "**/R.java’
doFirst(){
printin(**Generating the Javadocs is starting"")

¥

95

doLast(){
printin(**'Generating the Javadocs is done™)

}
¥

As for the others tasks of that type, you need to provide information. Here the task needs to know:

e Where is the source
e Where is the destination
e Which file to exclude

We also add the flag failOnError to false to keep going with our gradle build even if Javadoc find a
problem (like where is android.View class).

22.7 runReporters: PMD task
Really the same pattern we apply:

In your tools_reporter.gradle file you add PMD and call it in the runReportersTools task:

apply from: ‘gradle/toolsReporter/pmd.gradle’
/lapply from: "gradle/check/codequality-infer.gradle™
/lapply from: "gradle/check/codequality-checkstyle.gradle™

/
* Your Tasks for building and checking

**/

/**
* Build then Run AndroidTests and UnitTests.
*/
task fullBuild(dependsOn: [":app:build",":app:connectedAndroidTest',":app:test']) {
group = project.ext.myGradleGroup
description ="'Build then Run AndroidTests and UnitTests."
doLast {
println *Done’
}
}

/**
* Generate the Analysers tools reports on your projects
*/
task runReportersTools(dependsOn: [
‘findbugs',//ok
'JacocoTestReport',//ok
'pmd’,//ok
'generateProjectJavadocs’//ok even if the tasks fails, javadoc are generated

Now you create your file script,
And you create your PMD task in it:

apply plugin: ‘pmd’

/ * - "

* PMD file
**/

def reportsDir = "'${project.buildDir}/reports"

/I Add checkstyle, findbugs, pmd and lint to the check task.

96

check.dependsOn ‘pmd’

/**
* Launch PMD on the project
*/
task pmd(type: Pmd, dependsOn: [
":app:assembleDebug’,
":app:cleanPreviousPmdReports',//ok
DA
group = "MyCMS_tasks"
description =""Generate the pmd report, but I am not sure we want it."
ignoreFailures = true
ruleSetFiles = files("'gradle/toolsReporter/pmd/pmd-ruleset.xml’")
ruleSets = []

source ‘src/main/java’, ‘src/basile/java’, ‘src/lila/java’, ‘src/addition/java’, ‘src/multiplication/java’
include "**/* java’
exclude "**/gen/***

reports {
xml.enabled = false
html.enabled = true
xml {
destination ""$reportsDir/pmd/pmd.xml**
}
html {
destination ""$reportsDir/pmd/pmd.html**
}
}
}

//Remove directory where release test reports will be copied into
task cleanPreviousPmdReports(type: Delete) {
doLast {
delete '${project.buildDir}/reports/pmd’
}
}

Really as usual. You apply the plugin you want to use, here pmd, and you give it the parameters,
source, report types, reports destination.

The only main difference is the rule set. | create the file under ./pmd/ and its content is the default
one:

<?xml version=""1.0""?>

<ruleset xmins:xsi=""http://www.w3.0rg/2001/XMLSchema-instance’ name=""Android Application Rules"
xmins=""http://pmd.sf.net/ruleset/1.0.0"
xsi:noNamespaceSchemalocation=""http://pmd.sf.net/ruleset_xml_schema.xsd"
xsi:schemalocation=""http://pmd.sf.net/ruleset/1.0.0 http://pmd.sf.net/ruleset_xml_schema.xsd"'>

<description>Custom ruleset for Android application</description>

<exclude-pattern>.*/R.java</exclude-pattern>
<exclude-pattern>.*/gen/.*</exclude-pattern>

<rule ref=""rulesets/java/android.xml** />
<rule ref=""rulesets/java/clone.xml" />
<rule ref=""rulesets/java/finalizers.xml"" />
<rule ref=""rulesets/java/imports.xml**>
<!-- Espresso is designed this way !-->

97

<exclude name=""TooManyStaticlmports" />

</rule>

<rule ref=""rulesets/javal/logging-java.xml'* />

<rule ref=""rulesets/java/braces.xml" />

<rule ref=""rulesets/java/strings.xml"" />

<rule ref=""rulesets/java/basic.xml"" />

<rule ref=""rulesets/java/naming.xml"*>
<exclude name=""AbstractNaming"* />
<exclude name=""LongVariable" />
<exclude name=""ShortMethodName" />
<exclude name=""ShortVariable" />
<exclude name=""VariableNamingConventions" />

</rule>

<[ruleset>

http://pmd.sourceforge.net/pmd-5.1.1/howtomakearuleset.html

https://pmd.github.io/pmd-5.8.1/pmd-java/rules/index.html

23 The release scripts

We are ready to create the release. The goal, press a button and have every think generated for you,
like this:

release
master_v1
reports
androidTests
findbugs
jacocoBasile
jacocolila
javadoc
prmd
tests
mm lint-results, html
sy lint-results.ml
i!j app-basile-multiplication-debug_1.0.0.1+2017_w4d5.2.apk
Bl app-basile-multiplication-release_1.0.0.1+2017_w45.2.apk
i!j app-lila-addition-debug_1.0.0.1+2017_w45.2.3pk
Bl app-lila-addition-release_1.0.0.1+2017_w45.2.apk
=| icon_groot.png

fm report_indexhtml

In your release folder, you want:

o All your apk
e your lint, androidTests,findbugs,jacoco,pmd,tests reports
e your Javadoc

So what we want to do is simple:

apply from: ‘gradle/release/to_release folder.gradle’

98

http://pmd.sourceforge.net/pmd-5.1.1/howtomakearuleset.html
https://pmd.github.io/pmd-5.8.1/pmd-java/rules/index.html

/[This is the root task
task generateRelease(dependsOn: [‘clean’,
‘cleanReleaseReportDirectory’,
‘packageRelease’,
"releaseBuild']) {
group = project.ext.myGradleGroup
description ="'Generate the Release.”
println "Task generateRelease processing..."
/1 do nothing, In am an entry point
/11 use task dependency to launch the build
doLast{
println ‘upload is next step..." }

The only not yet explained task is packageRelease. In fact it moves around the files from somewhere
to your release folder. We have defined those tasks in the release/to_release_folder.gradle file.

This file has 5 gradle tasks:

e packageRelease

o moveTheApkToReleaseFolder

e moveTheReportToReleaseFolder

e moveTheReportindexToReleaseFolder
e cleanReleaseReportDirectory

This file is:

/***

* Task to move report/apk/aar to the release folder
********************~k*************************************/
def releaseRootFolder="release/* + def_branche_name+'_v'+project.ext.versionCode
/**printing content of the release directory
/Ihttp://stackoverflow.com/questions/18569983/androidgradle-list-directories-into-a-file
/[The task name is normally packageRelease
/[But for this file, the following name is better*/
task packageRelease(dependsOn: ['moveTheReportToReleaseFolder’,
'moveTheReportindexToReleaseFolder",
'moveTheApkToReleaseFolder']) {
group = project.ext.myGradleGroup
description =""List the file that belongs to the release folder. Depends on the fullBuild and move tasks.""
doFirst {
println "Task packageRelease’
}
doLast {
/lthen list them
println 'starting the work with the branch® + def_apk_name_wrelease
println **Listing files contained in:${releaseRootFolder} == "'
/ldefine the variables for files location
def releaseRootF =new File(releaseRootFolder)
releaseRootF.mkdirs()
releaseRootF.setWritable(true)
def listFile = new File(releaseRootF, 'FolderContent.txt")
listFile.setWritable(true)
/ldefine the content to write
def contents = ****
/lget the files tree

99

def tree = fileTree(dir: releaseRootF, excludes: ['**/*.js’,
x[css',
[html”,
R xml'])
/Ibrowse all those files
tree.visit { fileDetails ->
if (MfileDetails.isDirectory()) {
contents += ""${fileDetails.relativePath}"* + "\n"*
}
}

/Iwrite the content
listFile.write contents
printin 'listReleaseFiles over’

}
}

/**
* Move the generated files to the delivery
*/
task moveTheApkToReleaseFolder(type: Copy,
dependsOn: *fullBuild") {
group = project.ext.myGradleGroup
description =""Move generated apk into the release_folder inside the good folder (depend on the branch).
It depends on the ™
/lyou need to define the xact folder, else it reproduces the folder hierarchy
from *build/outputs/apk/basileMultiplication/debug’,
"build/outputs/apk/lilaAddition/debug’,
"build/outputs/apk/basileMultiplication/release’,
'build/outputs/apk/lilaAddition/release’
into releaseRootFolder
include('**/*.apk")
/Il want all the apk, but if you want only debug, you have them below:
Il exclude("**/*-release-*")
rename { String fileName ->
fileName.replace(*".apk", def_apk_name_wrelease + ".apk')
}
doFirst {
println *“Task moveTheFileToReleaseFolder’
}
doLast {
printin ‘moveTheFileToReleaseFolder over'
}
}

//Move the generated files to the delivery
task moveTheReportToReleaseFolder(type: Copy,
dependsOn: ['runReportersTools',
‘cleanReleaseReportDirectory']) {
group = project.ext.myGradleGroup
description ="*Move the build/report folder into the weekly_release.’
from *build/reports/*
into releaseRootFolder + ‘/reports/*
include("**/*")
exclude("**/*-release-*")
doFirst {
println "Task moveTheReportsToReleaseFolder’
}
doLast {
println *‘moveTheFileToReleaseFolder over’

¥

100

}

//Move the report index to the delivery
task moveTheReportindexToReleaseFolder(type: Copy) {
group = project.ext.myGradleGroup
description =""Move the build/report index into the weekly _release."
from 'gradle/release/report’
into releaseRootFolder
include("**/*")
exclude(***/*-release-*")
filter { String line ->
if(line.contains("${DateOfTheDay}")){
line.replace('${DateOfTheDay}',project.ext.def_readableSchoolDate)
Yelse line
}
doFirst {
println "Task moveTheReportsindexToReleaseFolder”
}
doLast {
printin ‘moveTheFileToReleaseFolder over'
}
}

/IRemove directory where release test reports will be copied into
task cleanReleaseReportDirectory(type: Delete) {
group = project.ext.myGradleGroup
description =""Clean the directory of the report in the weekly_release.™
delete releaseRootFolder + ‘/reports/’,
releaseRootFolder + */report_index.html’
}

runReportersTools.mustRunAfter ‘cleanReleaseReportDirectory’
moveTheReportindexToReleaseFolder.mustRunAfter ‘cleanReleaseReportDirectory"

23.1 One entry page for your report
A good practice is to have one html entry point to browse your tests and reports. | reuse the one of
lint to obtain this one:

101

= Tools analysis reports for the project MultiplicationBasile

Tests Reports

Unit Tests Basile Debug

Is the tests associated with the Basile apk (debug config).

Unit Tests Basile Release

Is the tests associated with the Basile apk (release config).

Unit Tests Lila Debug

Is the tests associated with the Lila apk (debug config)

Unit Tests Lila Release

Is the tests associated with the Lila apk (release config).

Basile Instrumented Tests

Instrumented tests for Basile apk

Lila Instrumented Tests

Instrumented tests for Lila apk.

For MyCms Android testing strategy, follow the links

Tools analysis Reports

Lint Full Report

Official Android coding rules tool for Android provided by Google

FindBugs

FindBugs Is a program which uses static analysis to look for bugs in Java code.

Basile Tests coverage

Tests coverage, all is said in the title.

It's pretty easy and will save you a lot of time if you want to use your reports to analyze your project.

| just created a folder with the root page:

> properties

report_index.html

{E} to_release_folder.gradle
> toolsReporter
{E} builds_hooks.gradle
{E} load_accounts.gradle
{E} release.gradle
{E} tools_reporter.gradle
{E} var_definition.gradle

102

And we create a task to copy paste this file into the release folder. We add the date of the generation
of the report and the version of the application in the html file.

Automaticly generated the 09 nov. 2017 06:27

BasileMultiplication exact version name: _1.0.0.1+2017_w45.2

The task is easy:

task moveTheReportindexToReleaseFolder(type: Copy) {
group = project.ext.myGradleGroup
description =""Move the build/report index into the weekly _release."
from ‘gradle/release/report’
into releaseRootFolder
include("**/*")
exclude("**/*-release-*")
filter { String line ->
if(line.contains('${DateOfTheDay}")){
line.replace('${DateOfTheDay}',project.ext.def readableSchoolDate)
Yelse line
}
doFirst {
println "Task moveTheReportsindexToReleaseFolder’
}
doLast {
printin ‘moveTheFileToReleaseFolder over'

¥
}

The tricky part is the filter, which is in fact call each time a line is found, you can manipulate the
string. And it’s related to this html extract (in the file report_index):

<header class=""mdl-layout__header">
<div class=""mdl-layout__header-row"'>

Tools analysis reports for the project MultiplicationBasile
<div class=""mdl-layout-spacer"></div>
<nav class=""mdl-navigation mdl-layout--large-screen-only**>
Automaticly generated the ${DateOfTheDay}

BasileMultiplication exact version name: ${VersionNumber}
</nav>
</div>
</header>

You just have to provide a good html file to present your report. In this html file you just have to use
relative path (you are in your release folder).Like this:

<h2 class=""mdl-card__title-text">

Unit Tests Lila Debug
</h2>
Is the tests associated with the Lila apk (debug config).

103

24 The upload part

What'’s left to do according to the release? Two elements; upload on a repository (maven repository)
and deliver the application.

| use private Nexus Repository and Balto for that. So useless for us in a generic way.
For automatically deliver to GooglePlay, | have found this plugin that seems to be really easy to use:

https://github.com/Triple-T/gradle-play-publisher

For the upload to mavenCentral, JForg or Nexus, you always will have the same information to
provide.

24.1 Upload: Maven basics principles

When uploading your project to a MavenCentral repo, you go back to Maven concepts. Gradle has
been built upon Maven (which has been created upon Ant...) and it really helps us. A while ago (7
years), | wrote a book explaining how to use Maven and Jenkins for Cl on Android. Well almost a
prehistoric book now in 2017, but at the time, it was hell just to make Eclipse, Maven and the
Android project build worked together. Today, | can tell you, each morning you can send a “Il love
you” to the Gradle team and the Gradle community, those silent actors that have enhanced our daily
life so concretely. Hey dudes, thank.

So | want to share with you the basics on Maven, | copy paste what | was explaining 7 years ago. It’s
really important to have those concepts in mind when trying to talk with a Maven repository.

[Extract from “Android A Complete Course” M. Sequy android2ee@2010]
Let’s stop thinking « Android » for a while and start thinking « Java » again.

Maven'’s goal is to rationalize a project’s life cycle by means of tools and norms. This means
managing compilation, setting unitary tests, managing packaging, deployment, project reports (java
doc, test reports, PMD), linking to a source versioning tool, linking to a continuous integration tool...

That is why Maven provides tools and norms.

The tools will write certain files for you (MakeFile, Ant). The normalization allows any developer to go
from one project to another without losing sight of the project. The POM file (Project Object Model)
is a normalized file that describes the project and enables Maven to follow its life cycle.

Let’s start by the beginning and build a Maven project:

1.1.1.1 First Pom
Create a project called MyProject

Create a pom.xml file in MyProject and write in this content:

<project>
<modelVersion>4.0.0</modelVersion>
<groupld>com.mycompany.myproject</groupld>
<artifactld>MyProject</artifactld>
<version>SNAPSHOT</version>

</project>

Create the folder src/main/java/com/mycompany/myproject in MyProject

104

https://github.com/Triple-T/gradle-play-publisher

Write the source src/main/java/com/mycompany/myproject/Person.java in

package com.mycompany.myproject;
public class Person {
public String name;
public String telephone;
public String email;
public String toString() {
return new StringBuilder()
.append(name).append(",")
.append(telephone).append(™,")
.append(email).toString();
}
H

Compilator et packager: Do "mvn package" in the MyProject folder

[INFO] Building jar: /MyProject/target/MyProject-SNAPSHOT .jar
[INFO]
[INFO] BUILD SUCCESSFUL
[INFO]

The projects’ sources are compiled in target/classes.

The project is packaged in target/MyProject-SNAPSHOT.jar
1.1.1.2 What just happened?

1.1.1.2.1 Project coordinates
Maven provides a coordinates system for all projects. These coordinates have three variables (just
like with latitude, longitude, altitude) that are:

groupld: This is the group identifier (for an organization, team, company or any other kind of
development group). Conventionally, start with the domain name of the organization (in the same
way as with the project’s root java package) which can be com, net, org... Example
net.fr.tlse.sti.android

artifactld: Identifier of the project in the group of projects that belong to groupld. Do not use any
« . » in the names of the artifactld

version: Identifier of the version to build. There are two different types: the first type is a normal
version number, the other type is a Snapshot. By convention for a normal version number, the
identifier should be:

<major version>.<minor version>.<incremental version>-<qualifier>

This, for example, would give us 2.1.0-alpha. The qualifier is not mandatory, the other elements are
highly recommended. The Snapshot version type is in fact a kind of syntax that allows you to build
versions (typically during the over-night build) that are named in function of the date on which the
build took place. This syntax is to be used in a project under development that has not yet reached a
version but is performing builds on a regular basis (either with continuous integration, or by opening
up the source for other modules or projects).

There is also a fourth identifier:

105

Classifier: Allows you to add to coordinate (so to a same project with a same version i.e. the same
code) a piece of additional information. This might be the type of DK used by the build, the
destination platform... It is a way to add information to a code that is the same but not packaged in
the same way. In other words, a project that is compiled with the JDK 1.3 and the JDK 1.6 without
any modifications in the code will use classifier to distinguish between the two builds.

So my first POM defines the project (its unique and exact name).

1.1.1.2.2 Project structure convention
By convention, Maven assumes that a project is structured in the following way:

my-app
|-- pom.xml
) (¢

“--app
“-- App.java
“-- resources
|-- com
“-- mycompany
“-- app
“-- App.properties

|
|
| “-- mycompany
|
|

“--app
“-- AppTest.java
“-- resources
--com
“-- mycompany
- app
“-- AppTest.properties

|
|
| “-- mycompany
|
|

This way, Maven does not need any additional information to compile, package or test a project. By
respecting this structure you allow Maven to perform actions on the project. It is for this reason that
the class has been put in the directory src/main/java/com/mycompany/myproject.

When working with Android, it is impossible to respect this structure because it clashes with the
imposed structure of an Android project. It's up to Maven to adapt, not Android.

[Note from 2017: At the time, it was really a hell, not possible to be compatible with the maven
default structure. It was tough, | swear, it was really tough]

1.1.1.2.3 A build project’s life cycle

For Maven, projects are always built step by step. Each phase being necessary to perform the one
following it. Each stage can be composed of several sub-tasks, goal. The list of tasks for a build is:

106

Validate: Validates that the project is correct and that all the necessary information is
present.

Compile: Compiles the source code of the project.

Test: Tests the compiled source code by using the available test framework. These tests do
not require that the code be deployed or packaged.

Package: Packages the compiled code in its targeted distribution format (Jar, War, Apk).

Integration-test : Generates and deploys the package in an
integration space when necessary and performs integration
tests.

Verify: Launches the verifications that makes sure that the package is valid and that it
meets quality criteria.

Install: Installs the package in the local repository so it can be used as a dependency for
local projects that reference it.

Deploy: This is done in an integration or production space, it copies the final package in
the remote repository which allows it to be shared with other developers and other projects.

For Maven to perform a task, simply tell it to do so. Hence, to launch:

e compilation: « mvn: package » is sufficient,

e tests, « mvn:verify » is sufficient,

e sharing with other projects, « mvn:install » must be called (the package is deployed in the local
repository).

Each phase has a certain number of goals. Each phase is linked to a principal goal, which is called
during mvn:***_This mapping has been partially reproduced here:

Phases Goals

process-resources resources:resources
compile compiler:compile
process-test-resources resources:testResources
test-compile compiler:testCompile
test surefire:test

package jar:jar

install install:install

deploy deploy:deploy

[End of Extract from “Android A Complete Course” M. Sequy android2ee@2010]

24.2 Upload : In a Nexus Repository
We use the Maven plugin to do that. So at the top of your gradle.build, apply it:

/**

* Used to deploy on Nexus our apk

107

*/
apply plugin: ‘maven’

More resources on the plugin: https://docs.gradle.org/current/userguide/maven plugin.html|

To upload in a Nexus, you will need two elements. The script in one file, the parameters in an other
one. The first one is shared with the team, the second one is confidential. Like you did for your
Signing configurations. This way you insure the internal ship cannot make the biggest mistake of his
stage.

So create your files in your gradle/upload/nexus or gradle/upload folder.

v 2 MultiplicationBasile D:\Git\)MyProjets\Multiplica
» Jgradle
> JAdea
v [app

[build

>

properties

v release

> report

upload

nexus_apk.gradle

nexus_apk_var_def.gradle
E} to_release folder.gradle

v toolsReporter

Let’s start by the properties you need. The file nexus_apk_var_def.gradle define them like this:

You will need all the value below:

/IDefine the coordinates of your project
1l
project.ext {

/IDescribe the coordinates of your project (optional)

POM_NAME = "BasileMultiplication Application deployed on Nexus"

/l[groupld: This is the group identifier (for an organization, team, company or any other kind of
/ldevelopment group). Conventionally, start with the domain name of the organization (in the same
//way as with the project’s root java package) which can be com, net, org... Example
POM_GROUP_ID = ""com.android2ee.basile.multiplication"

/lartifactld: Identifier of the project in the group of projects that belong to groupld. Do not use any

/I« . » in the names of the artifactld

//[Exemple: acms-android-mycms or acms-android-androidauto
POM_ARTIFACT_ID = ""basile-multiplication"

/Iversion: Identifier of the version to build. There are two different types: the first type is a normal

/Iversion number, the other type is a Snapshot. By convention for a normal version number, the

/lidentifier should be:

/I<major version>.<minor version>.<incremental version>-<qualifier>

/IThis, for example, would give us 2.1.0-alpha. The qualifier is not mandatory, the other elements are

/Ihighly recommended. The Snapshot version type is in fact a kind of syntax that allows you to build

/Iversions (typically during the over-night build) that are named in function of the date on which the

/Ibuild took place. This syntax is to be used in a project under development that has not yet reached a

/Iversion but is performing builds on a regular basis (either with continuous integration, or by opening

108

https://docs.gradle.org/current/userguide/maven_plugin.html

/lup the source for other modules or projects).
VERSION_NAME = project.def_apk _name_wrelease
/[Tell if it is a release or not
//Release version needs to be sign using a gpg (bottom of the file)
/Nt can be TRUE or FALSE
RELEASE_VERSION = "FALSE"
/IThe packaging of the build
/[Exemple aar or apk or jar"
POM_PACKAGING = "apk"*

//Define How we can retrieve the source of the project
1
//Have a look here to understand this section
/Ihttps://maven.apache.org/scm/git.html

/IGive us a description of the project (optional)

POM_DESCRIPTION = ""This is the apk of the Basile Multiplication™
/IThe Url where your project lie (only for information)

POM_URL = ""https://github.com/MathiasSeguy-Android2EE/MultiplicationBasile™
/[The url to connect to push/pull source

POM_SCM_URL = "https://github.com/MathiasSeguy-Android2EE/MultiplicationBasile™
/[The connection ot the source

POM_SCM_CONNECTION = "'scm: git:ssh://github.com/MathiasSeguy-
Android2EE/MultiplicationBasile"
/IThe connection ot the source as a developper

POM_SCM_DEV_CONNECTION = *scm: git:ssh://github.com/MathiasSeguy-
Android2EE/MultiplicationBasile"
/IYear of the birth of the project

POM_INCEPTION_YEAR = ""2017"

//Define your licenec type
1

POM_LICENCE_NAME ="Apache2"
POM_LICENCE_URL ="https://www.apache.org/licenses/LICENSE-2.0""
POM_LICENCE_DIST =

//Define your name
I

POM_DEVELOPER_ID = "MSE_A2EE"
POM_DEVELOPER_NAME = "Seguy Mathias"
POM_DEVELOPER_MAIL = "mathias.seguy@android2ee.com"
POM_DEVELOPER_ROLE = "Android Expert"

/IDefine where to deploy
!

NEXUS_USERNAME = "Name"
NEXUS_PASSWORD ='Password"
NEXUS_URL = ""http://nexus.somewhere.com:8081"

SNAPSHOT_REPOSITORY_URL =
"http://nexus.somewhere.com:8081/repository/basile_multiplication_apk_snap

RELEASE_REPOSITORY_URL =
"http://nexus.somewhere.com:8081/repository/basile_multiplication_apk"’

//Define your GPG for signing your archives
I

109

/Isigning.keyld=
/Isigning.password=
/[signing.secretkeyRingFile=

//Reference:

/Ihttp://zserge.com/blog/gradle-maven-publish.html
/Ihttps://github.com/A-CMS/alliance-platform-parent/blob/master/pom.xml
IInttps://maven.apache.org/scm/git.html

}

We will use them in our script to upload our archives. We will override the uploadArchives task to
upload the default apk on Nexus.

You have 3 main steps:

e Define in the mavenDeployer section, the coordinates of the project
e and its pom project description
e You can after that add tasks (source, Javadoc...) using the artifact pattern

We use and reuse the variables we have defined in nexus_apk_var_def.gradle file.

uploadArchives {
group = project.ext.myGradleGroup
description =""Upload the achive in Nexus repository. The selected archive is defined in build.gradle™ +
"in the android."
repositories {
mavenDeployer {
//Define the Coordinates of the project

pom.artifactld = project. POM_ARTIFACT_ID
pom.groupld = project.POM_GROUP_ID
//1f you are on master, push on release
if (project.def_branche_name.contains(‘master")
|lproject.def_branche_name.contains(‘dev')){
println ‘ReleaseVersion'
pom.version = project. VERSION_NAME
repository(url: project RELEASE_REPOSITORY_URL) {
authentication(userName: project. NEXUS_USERNAME, password:
project. NEXUS_PASSWORD)
}

}else {
println *Snapshot"

pom.version = project. VERSION_NAME+'-SNAPSHOT"
repository(url: project. SNAPSHOT_REPOSITORY_URL) {
authentication(userName: project. NEXUS_USERNAME, password:
project. NEXUS_PASSWORD)
}
}

/IDescribe your POM and its content
pom.project {
name project.POM_NAME
packaging project.POM_PACKAGING
description project.POM_DESCRIPTION+'for the apk '+project.def_apk name_wrelease
url project.POM_URL

scm {

url project.POM_SCM_URL
connection project.POM_SCM_CONNECTION

110

developerConnection project.POM_SCM_DEV_CONNECTION

}
licenses {
license {
name project.POM_LICENCE_NAME
url project.POM_LICENCE_URL
distribution project. POM_LICENCE_DIST
}
}
developers {
developer {
id project.POM_DEVELOPER_ID
name project.POM_DEVELOPER_NAME
}
}

/IAdd the Javadocs, the source jar tasks and some more if you want

task androidJavadocsJar(type: Jar, dependsOn: generateProjectJavadocs) {
classifier = 'javadoc’
from generateProjectJavadocs.destinationDir

}

task androidSourcesJar(type: Jar) {
classifier = 'sources'
from android.sourceSets.main.java.sourceFiles

/IAdd those tasks as artifacts to have them took into account
artifacts {

archives androidSourcesJar

archives androidJavadocsJar

}

/IYou could have had signing and javadocs also.
/I signing {
I required { isReleaseBuild() && gradle.taskGraph.hasTask("uploadArchives™) }
I sign configurations.archives
I}

/I task androidJavadocs(type: Javadoc) {

I failOnError false // add this line

1 source = 'src/main/java’

I source = android.sourceSets.main.java.getSrcDirs()
I}

}
And it should works.

25 Taking care of libraries

As a developer, you should respect the open source libraries much more than your managers. And a
good way to do that is to display the reward associated with the libraries you use. And by the way,
you can be suit if you don’t respect the OSP’s licensing of the OSP you use.

111

For that | use the plugin Android License Tools Plugin (https://github.com/cookpad/license-tools-
plugin) which does that really well. Have a look at its ReadMe and five minutes later, it’s
implemented on the project.

In your application build.gradle, link to the plugin

buildscript {
repositories {
mavenCentral()
jcenter()
maven { url "https://maven.fabric.io/public’ }
google()
}

dependencies {
...
/IGradle License Plugin
classpath ‘com.cookpad.android.licensetools:license-tools-plugin:0.23.0"

¥
¥

Then in the gradle.build of your module (of your application), apply the plugin:

/**

* This plugin provides a task to generate a HTML license report based on the configuration
*You can find the plugin project here :https://github.com/cookpad/license-tools-plugin

*/

apply plugin: ‘com.cookpad.android.licensetools’

Now you just have to call the task that generates your licences html file (or json) you can use to
display it in a webview in your application. The best is to do it when making a release build. So just
make your releaseBuild task depends on it. As simple as that:

//Make a full build :clean/build/InstrumenetationTests
task releaseBuild(dependsOn: [
‘generateLicensePage’,
I ‘enableCrashlytics’,
'buildAndCheckProject’
D{

It's just perfect.

26 Conclusion

Having this tooling on any Android project is bless. | hope you will add them, | hope those articles
helped you. Thanks for reading and have a good life.

La bise.

112

https://github.com/cookpad/license-tools-plugin
https://github.com/cookpad/license-tools-plugin

